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PREFACE.

IT is almost impossible to follow the later developments of

physical or general chemistry without a working knowledge

of higher mathematics. I have found that the regular

textbooks of mathematics rather perplex than assist the

chemical student who seeks a short road to this knowledge,

for it is not easy to discover the relation which the pure

abstractions of formal mathematics bear to the problems

which every day confront the student of Nature's laws,

and realize the complementary character of mathematical

and physical processes.

During the last five years I have taken note of the

chief difficulties met with in the application of the mathe-

matician's x and y to physical chemistry, and, as these notes

have grown, I have sought to make clear how experimental

results lend themselves to mathematical treatment. I have

found by trial that it is possible to interest chemical students

and to give them a working knowledge of mathematics

by manipulating the results of physical or chemical ob-

servations.

I should have hesitated to proceed beyond this experi-

mental stage if I had not found at The Owens College a



viii PREFACE.

set of students eagerly pursuing work in different branches

of physical chemistry, and most of them looking for help

in the discussion of their results. When I told my plan

to the Professor of Chemistry he encouraged me to write

this book. It has been my aim to carry out his suggestion,

so I quote his letter as giving the spirit of the book,

which I only wish I could have carried out to the letter.

"THE OWENS COLLEGE,
" MANCHESTER.

" MY DEAR MELLOR,

"If you will convert your ideas into words and write a

book explaining the inwardness of mathematical operations as applied

to chemical results, I believe you will confer a benefit on many students

of chemistry. We chemists, as a tribe, fight shy of any symbols

but our own. I know very well you have the power of winning new

results in chemistry and discussing them mathematically. Can you

lead us up the high hill by gentle slopes? Talk to us chemically to

beguile the way ? Dose us, if need be,
' with learning put lightly, like

powder hi jam
'

? If you feel you have it in you to lead the way we

will try to follow, and perhaps some of the youngest of us may succeed^

Wouldn't this be a triumph worth working for ? Try.

" Yours very truly,

" H. B. DIXON."

THE OWENS COLLEGE,

MANCHESTER, May, 1901.
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" The first thing to be attended to in reading any algebraic treatise is the

gaining a perfect understanding of the different processes there exhibited,

and of their connection with one another. This cannot be attained by a

onere reading of the book, however great the attention which may be given.
It is impossible in a mathematical work to fill up every process in the

manner in which it must be filled up in the mind of the student before

he can be said to have completely mastered it. Many results must be given
of which the details are suppressed, such are the additions, multiplications-,

extractions of square root, etc., with which the investigations abound.

These must not be taken on trust by the student, but must be worked by
his own pen, which must never be out of his hand while engaged in any

algebraical process." DE MORGAN, On the Study and Difficulties of Mathe-

matics, 1831.



PROLOGUE.

WHEN Sir Isaac Newton communicated the manuscript of his
" Methodus fluxionem

"
to his friends in 1669 he furnished

science with its most powerful and subtle instrument of

research. The states and conditions of matter, as they
occur in Nature, are in a state of perpetual flux, and these

qualities may be effectively studied by the Newtonian method
whenever they can be referred to number or subjected to

measurement (real or imaginary). By the aid of Newton's

calculus the mode of action of natural changes from moment
to moment can be portrayed as faithfully as these words

represent the thoughts at present in my mind. From this,

the law which controls the whole process can be determined

with unmistakable certainty. by pure calculation the so-

called Higher Mathematics.

This work starts from the thesis that so far as the

investigator is concerned,

Higher Mathematics is the art of reasoning about the

numerical relations between natural phenomena; and the

several sections of Higher Mathematics are different modes
of viewing these relations.*

For instance, I have assumed that the purpose of the

Differential Calculus is to inquire how natural phenomena

* In the new (Jermaii .\itmi/>'/i <!<', Naturphttosophie, 1, f>0, 1^02, Ostwald main-

tains that mathematics is only a language in which the results of experiments may t><-

conveniently expressed ;
and from this standpoint criticises Kant's Metaphysical

Foundations of Science. '.'/'. footnote, page 1.
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change from moment to moment. This change may be

uniform and simple (Chapter I.) ;
or it may be associated

with certain so-called "singularities" (Chapter III.). The

Integral Calculus (Chapters IV. and VII.) attempts to

deduce the fundamental principle governing the whole

course of any natural process from the law regulating the

momentary states. Coordinate Geometry (Chapter II.) is

concerned with the study of natural processes by means of
"
pictures

"
or geometrical figures. Infinite Series (Chapters

V. and VIII.) furnish approximate ideas about natural pro-
cesses when other attempts fail. From this, then, we

proceed to study the various methods (" mathematical

tools") to be employed in Higher Mathematics.

This limitation of the scope of Higher Mathematics

enables us to dispense with many of the formal proofs of

rules and principles. Much of Sidgwick's
* trenchant indict-

ment of the educational value of formal logic might be urged

against the subtle formalities which prevail in
"
school

"

mathematics. While none but logical reasoning could be

for a moment tolerated, yet too often "its most frequent
work is to build a pons asinorum over chasms that shrewd

people can bestride without such a structure ".f

So far as the tyro is concerned theoretical demonstrations

are by no means so convincing as is sometimes supposed.
It is as necessary to learn to "think in letters" and to

handle numbers and quantities by their symbols as it is to

learn to swim or to ride a bicycle. The inutility of
"
general

proofs" is an everyday experience to the teacher. The be-

ginner only acquires confidence by reasoning about something
which allows him to test whether his results are true or

false
;
he is really convinced only after the principle has

been verified by actual measurement as in 88, say or by
arithmetical illustration as in 188, say.

" The best of all

proofs," said Oliver Heaviside in a recent number of the

Electrician, "is to set out the fact descriptively so that it

can be seen to be a fact". Remembering also that the

majority of students are only interested in mathematics so

* A. Sidgwick, The Use of Wards in Reasoning. (A. & C. Black, London.)

fO. W. Holmes, The Autocrat of the Breakfast Table. (W. Scott, London.)
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far as it is brought to bear directly on problems connected

with their own work, I have, especially in Part I., explained

any troublesome principle or rule in terms of some well-

known natural process. For example, the meaning of the

differential coefficient and of a limiting ratio is first explained
in terms of the velocity of a chemical reaction; the differen-

tiation of exponential functions leads us to compound interest

and hence to the "
Compound Interest Law" in Nature;

the general equations of the straight line are deduced from

solubility curves
;
discontinuous functions lead us to discuss

MendeleefFs work on the existence of hydrates in solutions
;

Wilhelmy's law of mass action prepares us for a detailed

study of processes of integration; Harcourt and Esson's

work introduces the study of simultaneous differential equa-
tions

;
Fourier's series is applied to diffusion phenomena,

etc., etc, Unfortunately, this plan has caused the work to

assume more formidable dimensions than if the precise and

rigorous language of the mathematicians had been retained

throughout.
I have sometimes found it convenient to evade a tedious

demonstration by reference to the "
regular textbooks ". In

such cases, if the student wants to "dig deeper," one of the

following works, according to subject, will be found sufficient :

Williamson's Differential Calculus, also the same author's

Integral Calculus (Longmans, Green, & Co., London);

Forsyth's Differential Equations (Macmillan & Co., London);
Johnson's Differential Equation* (Wiley & Son, New York).

Of course, it is not always advisable to evade proofs in

this summary way. The fundamental assumptions the so-

called premises employed in deducing some formulae must

be carefully checked and clearly understood. However
correct the reasoning may have been, any limitations intro-

duced as premises must, of necessity, reappear in the con-

clusions. The resulting formulae can, in consequence, only
be applied to data which satisfy the limiting conditions.

The results deduced in Chapter XI. exemplify, in a forcible

manner, the perils which attend the indiscriminate applica-

tion of mathematical formulae to experimental data. Some
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formulae are particularly liable to mislead. The "
probable

error
"

is one of the greatest sinners in this respect.
The teaching of mathematics by means of abstract

problems is a good old practice easily abused. The abuse

has given rise to a widespread conviction that "mathematics
is the art of problem solving," or, perhaps, the prejudice
dates from certain painful reminiscences associated with

the arithmetic of our school-days.
Under the heading

"
Examples

"
I have collected

laboratory measurements, well-known formulae, practical

problems and exercises to illustrate the text immediately

preceding. A few of the problems are abstract exercises in

pure mathematics, old friends which have run through
dozens of textbooks. A great number, however, are based

upon measurements, etc., recorded in papers in the current

science journals (Continental, American or British), and are

reproduced in this connection for the first time.

It can serve no useful purpose to disguise the fact that a

certain amount of drilling, nay, even of drudgery, is neces-

sary in some stages, if mathematics is to be of real use as

a working tool, and not employed simply for quoting the

results of others. The proper thing, obviously, is to make
the beginner feel that he is gaining strength and power

during the drilling. In order to guide the student along
the right path, hints and explanations have been appended
to those exercises which have been found to present any

difficulty. The subject-matter contains no difficulty which

has not been mastered by beginners of average ability with-

out the help of a teacher.

The student of this wrork is supposed to possess a work-

ing knowledge of elementary algebra so far as to be able to

solve a set of simple simultaneous equations,' and to know
the meaning of a few trignometrical formulae. If any

difficulty should arise on this head, it is very possible that

155, 156, or 188 to 194 will say what is required on

the subject. I have, indeed, every reason to suppose that

beginners in the study of Higher Mathematics most fre-

quently find their ideas on the questions discussed in
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^ l.ss to 194 have L.T\VM so rusty with neglect -,\

require refurbishing.

I have also assumed that the reader is ;ir<|ii;mite<l with

the elementary principles of chemistry and physics. Should

any illustration involve some phenomenon with which he

is not acquainted, there are two remedies to skip it, or to

look up some textbook. There is no special reason why the

student should waste time with illustrations in which ho has

no interest.

It will be found necessary to procure a set of mathe-

matical tables containing the common logarithms of numbers
and numerical values of the natural and logarithmic trigno-

metrical ratios. Such sets can be purchased for about

eighteen pence. The other numerical tables required for

reference in Higher Mathematics are reproduced in the last

chapter.
Where I am consciously indebted to any particular

authority for ideas, either in the design of a diagram or in

the writing of the text, I have stated the original source

so that the student may have the opportunity of consulting
the original for a fuller and perhaps a more lucid discussion.

I have great pleasure in thanking my friends for assist-

ance in reading over the proofs, more especially Mr. W. R.

Anderson, B.Sc., who has verified a great number of the

examples from the printed slips, and Mr. L. Bradshaw,

B.8c., who has* carefully checked all the numerical tables. I

am also pleased to acknowledge the general excellency of the

printer's share of the work.

It is, perhaps, too much to hope that all errors have been

eliminated from the text, and the writer will be grateful

when apprised of any which may have escaped his notice.

J. W. M.





ADDENDA AND CORRIGENDA.

P. 70, last sentence in footnote to read :

"
Gay Lussac says that Charles

had worked on this subject some years before himself, hence, etc." " See also

(27) p. 526."

P. 82, fig. 23, insert " R " as described in the text.

P. 85, fig. 25, the upper
" T" should be " T ".

P. 112, fig. 51, for "f
" read "$".

P. 113, fig. 52, for
" " read " r sin e ".

P. 189, equation 3, the vinculuin should not extend over "
df ".

P. 203, line 10, for
" 5-40

" read " 5-76 ".

P. 269, line 25, add " see (30) p. 526 ".

P. 289, line 16, for
" third " read "

first ".

P. 378, at end of line 1, insert " 322 ".





PART I.

ELEMENTARY.

CHAPTEE I.

THE DIFFERENTIAL CALCULUS.

1. On the Nature of Mathematical Reasoning.

" The philosopher may be delighted with the extent of his views, the

artificer with the readiness of his hands, but let the one remember

that without mechanical performance, refined speculation is an

empty dream, and the other that without theoretical reasoning,

dexterity is little more than brute instinct." DR. JOHNSON.

HERBERT SPENCER has de6ned a law of Nature as a proposition

stating that a certain uniformity has been observed in the relations

between certain phenomena. In this sense a law of Nature ex-

presses a mathematical relation between the phenomena under

consideration. Every physical law, therefore, can be represented

in the form of a mathematical equation. One of the chief objects

of scientific investigation is to find out how one thing depends on

another, and to express this relationship in the form of a mathe-

matical equation (symbolic or otherwise) is the experimenter's

ideal goal.*

There is in some minds an erroneous notion that the methods

of higher mathematics are prohibitively difficult. Any difficulty

* Thus Berthelot, in the preface to his celebrated Essai de M4caniquc Chimiqu*
our la tkennochemie of 1879, described his work as an attempt to base chemistry

wholly on those mechanical principles which prevail in various branches of physical

science. Kant, in the preface to his Metaphysischen Anfangsgruenden der Natur-

wisMnschaft, has said that in every department of physical science there is only so

much science, properly so called, as there is mathematics. As a consequence, he

denied to chemistry the name " science ". But there were no "journals of physical

chemistry" in his time (1786).

A
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that might arise is rather due to the complicated nature of the

phenomena alone. Comte has said in his Philosophie Positive,
' ' our feeble minds can no longer trace the logical consequences of

the laws of natural phenomena whenever we attempt to simul-

taneously include more than two or three essential factors ". *

In consequence it is generally found expedient to introduce
"
simplifying assumptions" into the mathematical analysis. For

example, in the theory of solutions we pretend that the dissolved

substance behaves as if it were an indifferent gas. The kinetic

theory of gases, thermodynamics, and other branches of applied

mathematics are full of such assumptions.

By no process of sound reasoning can a conclusion drawn from

limited data have more than a limited application. Even when
the comparison between the observed and calculated results is

considered satisfactory, the errors of observation may quite obscure

the imperfections of the formula based on incomplete or simplified

premises. Given a sufficient number of
"

if's," there is no end to

the weaving of " cobwebs of learning admirable for the fineness of

thread and work, but of 110 substance or profit" (Bacon). The

only safeguard is to compare the deductions of mathematics with

observation and experiment
" for the very simple reason that they

.are only deductions, and the premises from which they are made

may be inaccurate or incomplete. We must remember that we
cannot get more out of the mathematical mill than we put into it,

though we may get it in a form infinitely more useful for our

purpose
"

(John Hopkinson's James Forrest Lecture, 1894).

The first clause of this last sentence is often quoted in a

parrot-like way as an objection to mathematics. Nothing but

real ignorance as to the nature of mathematical reasoning could

give rise to such a thought. No process of sound reasoning

can establish a result not contained in the premises. -j-
It is

*
I believe that this is the key to the interpretation of Comte' s strange remarks :

"
Every attempt to employ mathematical methods in the study of chemical questions

must be considered profoundly irrational and contrary to the spirit of chemistry. . . .

If mathematical analysis should ever hold a prominent place in chemistry an aber-

ration which is happily almost impossible it would occasion a rapid and a widespread

degeneration of that science." (Freely translated from the fourth book of Auguste

Comte's Philosophie Positive, 1830.)

f Inductive reasoning is, of course, good guessing, not sound reasoning, but the

finest results in science have been obtained in this way. Calling the guess a "working

hypothesis," its consequences are tested by experiment in^fvery conceivable way. For
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admitted on all sides that any demonstration is vicious if it

contains in the conclusion anything more than was assumed

in the premises. Why then is mathematics singled out and

condemned for possessing the essential attribute of all sound

reasoning?
It has been said that no science is established on a firm basis

unless its generalisations can be expressed in terms of 'number, and

it is the special province of mathematics to assist the investigator

in finding numerical relations between phenomena. After experi-

ment, then mathematics. While a science is in the experimental

or observational stage, there is little scope for discerning numerical

relations. It is only after the different workers have " collected

data" that the mathematician is able to deduce the required

generalisation. Thus a Maxwell followed Faraday and a Newton

completed Kepler.

It must not be supposed, however, that these remarks are

intended to imply that a law of Nature has ever been repre-

sented by a mathematical expression with perfect exactness. In

the best of generalisations, hypothetical conditions invariably

replace the complex state of things which actually obtains in

Nature.

There is a prevailing impression that once a mathematical

formula has been theoretically deduced, the law, embodied in

the formula, has been sufficiently demonstrated, provided the

differences between the "calculated" and the "observed" results

fall within the limits of experimental error. The important point,

already emphasized, is quite overlooked, namely, that any discrep-

ancy between theory and fact is masked by errors of observation.

With improved instruments, and better methods of measurement,
more accurate data are from time to time available. The errors of

observation being thus reduced, the approximate nature of the

formulae becomes more and more apparent. Ultimately, the dis-

crepancy between theory and fact becomes too great to be ignored.

It is then necessary to "go over the fundamentals ". New formulae

must be obtained embodying less of hypothesis, more of fact. Thus,

from the first bold guess of an original mind, succeeding genera-

example, the brilliaut work of Fresnel was the sequel of Young's undulatory theory
of light, and Hertz's recent work was suggested by Maxwell s electro-magnetic theories.

J. Thomson's remarkable prediction of the influence of pressure on the melting point

of ice was experimentally verified by Lord Kelvin. See also pages 42, 156, etc.
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tions progress step by step towards a comprehensive and a complete
formulation of the several laws of Nature.*

, I shall proceed at once to explain the nature of the more im-

portant
" tools

"
used in the application of mathematical processes

to natural phenomena.

2. The Differential Coefficient.

Higher mathematics, in general, deals with magnitudes which

vary in a continuous manner. In order to render such a process

susceptible of mathematical treatment the magnitude is supposed
to change during a series of very short intervals of time. The
shorter the interval the more uniform the process. This conception
is of fundamental importance. To illustrate, let us consider the

chemical reaction denoted by the equation :

H
2 + Cl.2

= 2HCI,

(hydrogen) (chlorine) (hydrogen chloride),

and suppose that the product of the action hydrogen chloride

is removed from the sphere of the reaction the moment it is

formed,f
If thirty cubic centimetres of hydrogen chloride are formed in

one minute the reaction proceeds with a velocity of 30 c.c. per
minute. This statement is not meant to imply that O5 c.c. of

hydrogen chloride is formed during every second of the time of

observation, for 0*2 c.c. may have been formed in the first second*

and O8 c.c. during some other second of time. The fact observed

is that the mean rate of formation of hydrogen chloride is thirty

cubic centimetres per minute.

*
Most, if not all, the formulae of physics and chemistry are in the earlier stages

of such a process of evolution. For example, some exact experiments by Forbes and

by Tait indicate that Fourier's formula (page 375) for the conduction of heat gives

somewhat discordant results on account of the inexact simplifying assumption :
' ' the

quantity of heat passing along a given line is proportional to the rate of change of

temperature
"

;
Weber has pointed out that Fick's equation (page 376) for the diffusion

of salts in solution must be modified to allow for the decreasing diffusivity of the salt

with increasing concentration ;
and finally, van der Waals, Clausius, Rankine, Sarrau,

etc. , have attempted to correct the simple gas equation : pv = R6, by making certain

assumptions as to the internal structure of the gas.

f According to Bunsen and Roscoe these conditions are approximately realised

when a mixture of hydrogen and chlorine gases is confined over water saturated with

the two gases, and exposed to a constant source of light The water absorbs the HC1

as fast as it is formed.
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If it were now possible to measure the amount formed in thirty

seconds of time, and 18 c.c. of hydrogen chloride were obtained

during that interval, this would be equivalent to a velocity of

reaction of 36 c.c. per minute. In this case the calculated velocity

would more accurately represent the actual velocity during the

time of observation, because there would be less time for the rate

of formation of this compound to vary during thirty than during

sixty seconds.

Suppose further that O25 c.c. of hydrogen chloride were pro-

duced during an interval of one second, the observer would be

perfectly certain that he had determined the rate of formation of

this acid with a greater accuracy than before, because there would

be less time for any variation to take place.
*

Following out the

consequences of this reasoning we are quite sure that if an

observation could be made of the amount of hydrogen chloride

formed during one-millionth of a second, the rate of formation of

the compound at this moment would be still more accurate.

Using the symbol &x to denote the amount of hydrogen chloride

formed during the very small interval of time 8t, the quotient &x/&t

represents the velocity of the chemical reaction during this interval

of time. If we could measure the amount of substance formed

during an infinitely short interval of time the true velocity (v) of

the chemical reaction would be denoted by the equation :

where dx is a symbol used by mathematicians to represent an

infinitely small amount of something (in this case of HC1), and

dt a correspondingly short interval of time. Hence it follows

that neither of these symbols per se is of any practical value, but

their quotient stands for a perfectly definite conception, namely,
the rate of formation of hydrogen chloride during an interval of

time so small that all possibility of error due to variation of speed
is eliminated.

The quotient dx/dt is known as the differential coefficient of

x with respect to t. The value of x obviously depends on what

value is assigned to t
; for this reason x is called the dependent

variable, t the independent variable. The differential coefficient

of x with respect to t thus measures a velocity.

Just as the idea of the velocity of a chemical reaction represents

v
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the amount of substance formed in a given time, so the velocity of

any motion can be expressed in terms of the differential coefficient

of a distance with respect to time, be the motion that of a train,

tramcar, bullet, sound-wave, water in a pipe or an electric current.

Again, we may represent the differential coefficient of the volume

of a gas, the length of a rod, or the electro-motive force of a

galvanic element with respect to temperature to obtain the so-

called temperature coefficient or coefficient of expansion as the case

might be. The differential coefficient of the volume of a gas with

respect to pressure furnishes the so-called coefficient of compression,

which measures the compressibility of a gas.

From these and similar illustrations which will occur to the

reader, it will be evident that the conception called by mathe-

maticians the differential coefficient is not new. Every one

consciously or unconsciously uses it whenever a "rate,"
"
speed,"

or a "velocity" is in question.

NOTE ON VELOCITY. In elementary dynamics, velocity (v) is denned as

rate of motion, and is measured in terms of the distance (s) traversed in the

time (t). That is to say,

distance traversed _ ^1nr ..
. v = s^

time t

It is specially important for us to start with a clear idea of what is meant

by the terms "
velocity,"

" rate of motion," etc.

A train is observed to travel a distance of 60 miles in one hour. We
cannot therefore say that it has travelled 30 miles during the last half hour,

nor yet that it will travel 30 miles during the next half hour. On the other

hand, if the train, at any part of its journey, is going at the rate of a mile a

minute, we can say that the velocity at that particular moment is 60 miles

an hour.

Strictly speaking, it is a physical impossibility to actually measure the

"velocity at any instant," we must therefore understand by this term, the

mean or average velocity during a very small interval of time, with the proviso

tliat we can get as near as we please to the actual "
velocity at any instant" by

taking tlw interval of time sufficiently small.

We shall soon see that "methods of differentiation" will actually enable

us to find the velocity or rate of change during an interval of time so small

that the rate of motion has not time to change. The differential coefficient

is the only true measure of the velocity at any instant of time.

It is important to distinguish between the average velocity during any

given interval of time, and the actual velocity at any instant.

The term "
velocity

" not only includes the rate of motion, but also the

direction of the motion. If we agree to represent the velocity of a train

travelling southwards to London, positive, a train going northwards to
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Aberdeen would be travelling with a negative velocity. Again, if we con-

ventionally agree to consider the rate of formation of hydrogen chloride from

hydrogen and chlorine as a positive velocity, the rate of decomposition of

hydrogen chloride into chlorine and hydrogen will be a negative velocity.

It is not necessary, for our present purpose, to enter into refined

distinctions between rate, speed, and velocity. I shall use these terms

synonymously.
The concept velocity need not be associated with bodies. Every one is

familiar with the terms " the velocity of light,"
" the velocity of sound,"

" the

rate of propagation of an explosion wave," etc. The chemical student will

soon adapt the idea to such phrases as, "the velocity of chemical action,"
41 the speed of catalysis," "the rate of dissociation," "the velocity of dif-

fusion,"
" the rate of evaporation," etc.

It requires no great mental effort to extend the notion still further. If

a quantity of heat is added to a substance at a uniform rate, the quantity of

heat (Q) added per degree rise of temperature (6) corresponds exactly with

the idea of a distance traversed per second of time. Specific heat, therefore,

may be represented by the differential coefficient dQjd8. Similarly, the in-

crease in volume (V) (or length) per degree rise of temperature is represented

by the differential coefficient dV/d6; the decrease in volume (V) per gram of

pressure (p), is represented by the ratio - dV/dp, where the negative sign

signifies that the volume decreases with increase of pressure.

In the above examples, it has been assumed that unit mass or unit volume

of substance is operated upon, and therefore the differential coefficients re-

spectively represent specific heat, coefficient of expansion, coefficient of

compressibility. If we start with unit mass of substance, the coefficient of

velocity of a chemical reaction would obviously be dx/dt. (What does this

measure ? The rate of transformation of unit mass of substance.)

But velocity is generally changing. The velocity of a falling stone

gradually increases during its descent, while, if a stone is projected upwards,
its velocity gradually decreases during its ascent. Instead of using the

awkward term "the velocity of a velocity," the word "acceleration" is

employed. If the velocity is increasing at a uniform rate, the acceleration,

or rate of change of velocity, or rate of change of motion, is evidently

increase of velocity = acceUr(Mon .

f m LlJb
time t

where VQ and v
l respectively denote the velocities at the beginning and end

of the interval of time under consideration.

Mathematicians have agreed to represent an increasing velocity with a

positive sign, a decreasing velocity with a negative sign. If a clock gains one

second an hour, the acceleration is positive, if it loses one second an hour, the

acceleration is negative. This discussion is resumed in 7.

3. Differentials.

It is sometimes convenient to regard dx and dt, or more generally
dx and dy, as very small quantities which determine the course of
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any particular process under investigation. These small magni-
tudes are called differentials or infinitesimals.* Differentials may
be treated like ordinary algebraic magnitudes. The quantity of

hydrogen chloride formed in the time dt is represented by the

differential dx. Hence from (1), if dxjdt = v, we may write in the

language of differentials

dx = v.dt.

3. Orders of Magnitude.

If a small number n be divided into a million parts, each part

(/i/10
6
)
is so very small that it may for all practical purposes be

neglected in comparison with n. If we agree to call n a magnitude

of the first order, the quantity w/106 is a magnitude of the second

order. If one of these parts be again subdivided into a million

parts, each part (w/10
12

) is extremely small when compared with

n, and the quantity w/1012 is a magnitude of the third order. We
thus obtain a series of magnitudes of the first, second, and higher

orders,

n, n x 10~ 6
,
n x 10

~ 12
,

. . .,

each one of which is negligibly small in comparison with those

which precede it, and very large relative to those which follow.f
This idea is of great practical use in the reduction of intricate

expressions to a simpler form more easily manipulated. It is

usual to reject magnitudes of a higher order than those under

investigation when the resulting error is so small that it is out-

side the limits of the " errors of observation
"

peculiar to that

method of investigation. (See 96 and 189.)

In order to prevent any misconception it might be pointed out

that "great" and "small" in mathematics, like "hot" and

"cold" in physics, are purely relative terms. The astronomer

in calculating interstellar distances comprising millions of miles

takes no notice of a few thousand miles
;
while the physicist dare

not neglect distances of the order of the ten thousandth of an inch

in his measurements of the wave length of light.

A term, therefore, is not to be rejected simply because it seems

* Some one has defined differentials as small quantities
"
verging on nothing".

fNote 108 = unity followed by eight cyphers, or 100,000,000. lO" 8 is a decimal

point followed by seven cyphers and unity, or 10~ 8 = 1/10
8 = O'OOOOOOOl. This nota-

tion is in general use.
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small in an absolute sense, but only when it appears small in

comparison with a much larger magnitude, and when an exact

determination of this small quantity has no appreciable effect on

the magnitude of the larger. In making up a litre of normal

oxalic acid solution, the weighing of the 63 grams of acid required

need not be more accurate than to the tenth of a gram. In many
forms of analytical work, however, the thousandth of a gram is of

fundamental importance ;
an error of a tenth of a grain would

stultify the result.

5. Zero and Infinity.

The words "
infinitely small

"
were used in the second para-

graph. It is, of course, impossible to conceive of an infinitely small

or of an infinitely great magnitude, for if it were possible to retain

either of these quantities before the mind for a moment, it would

be just as easy to think of a smaller or a greater as the case might
be. In mathematical thought the word "infinity" (written oo)

signifies the properties possessed by a magnitude greater than any
finite magnitude that can be named. For instance, the greater

we make the radius of a circle, the more approximately does the

circumference approach a straight line, until, when the radius is

made infinitely great, the circumference may, without committing

any sensible error, be taken to represent a straight line. The con-

sequences of the above definition of infinity have led to some of

the most important results of higher mathematics. To sum-

marize, infinity represents neither the magnitude nor the value

of any particular quantity. The term "
infinity

"
is simply an

abbreviation for the property of growing large without limit. E.g.,

"tan 90 = oo
"
means that as an angle approaches 90, its tan-

gent grows indefinitely large. Now for the opposite of greatness

smallness.

In mathematics two meanings are given to the word " zero ".

The ordinary meaning of the word implies the total absence of mag-
nitude (called absolute zero). Nothing remains when the thing

spoken of or thought about is taken away. If four units be taken

from four units absolutely nothing remains. There is, however,
another meaning to be attached to the word different from the

destruction of the thing itself. If a small number be divided by a

billion we get a sn^all fraction. If this fraction be raised to the

billionth power we get a number still more nearly equal to absolute
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zero. By continuing this process as long as we please we con-

tinually approach, but never actually reach, the absolute zero.

In this relative sense zero relative zero is defined as " an

infinitely small
"
or "a vanishingly small number," or " a number

smaller than any assignable fraction of unity ". For example, we

might consider a point as an infinitely small circle or an in-

finitely short line. To put these ideas tersely, absolute zero

implies that the thing and all its properties are absent ; relative

zero implies that however small the thing may be its property of

growing small without limit is alone retained in the mind. This

will be more rigorously demonstrated in the next paragraph.

EXAMPLES. After the reader has verified the following results he will

understand the special meaning to be attached to the zero and infinity of

mathematical reasoning. Let n be any finite number, and let "?" denote

an indeterminate magnitude, that is, one whose exact value cannot be de-

termined :

(1) 004-00=00; -oD = ?;ftxd = 0;0xO = ?;nxa>=oo;
0/0 = ?; n/Q = oo

; Qjn = ; oo/O = oo ; O/oo = ; n/ oo =
; oo/n = 00; On ;

1/0" = oo
;

= ? ; 1/0 = ?; oo = oo
; I/ oo =

;
00 = ?

; I/ 00 = ?
;
n" = oc

when n > 1*, and n when n < 1
; 1/71*

= when n > 1, and 1/n
06 = oo

when n < 1
;
l
x = ?; 1/1*= ?

;
n = 1

; l/ = 1. The last two results are

proved in "the theory of indices" of any algebraic textbook.

(2) Let y 1/(1
-

x) and put x 1, then y = oo
;

if x< l,y is positive,

and y is negative when x > 1. Thus a variable magnitude may change its

sign when it becomes infinite.

(3) log 1 =
; logO = - oo

; log oo = oo.

6. Limiting Values.

(i)
The sum of an infinite number of terms may have a finite

value. Converting J into a decimal fraction we obtain

^ = O-lllll . . . continued to infinity,

or = TV + T-b + TJfrv + ... to infinity,

that is to say, the sum of an infinite number of terms is equal to i-

a finite term ! If we were to attempt to perform this summa-
tion we should find that as long as the number of terms is finite

we could never actually obtain the result i.

* The signs of inequality are as follows: "=$=" denotes "is not equal to";

">," "is greater than";
"

^j>," "is not greater than"; "<," "is less than
" -

and "<," "is not less than". Seep. 454.

For " = "
read "is equivalent to" or "is identical with".



S <>. THE DIFFERENTIAL CALCULUS. 1 1

If we omit all terms after the first, the result is ^ less than
,', ;

if we omit all terms after the third, the result is
1

OU too little ;

and if we omit all terms after the sixth, the result is
9 00() Ouo

less than
-J-,

that is to say, the sum of these terms continually

approaches but is never actually equal to
,
as long as the number

of terms is finite.
J-

is then said to be the limiting value of the

sum of this series of terms.

Again, the perimeter of a polygon inscribed in a circle is less

than the sum of the arcs of the circle, i.e., less than the circum-

ference of the circle.

In figure 1, let the arcs AaB, BbC ... be bisected at a, 6 ...
Join Aa, aA, Bb, . . . Although the perimeter of the second poly-

gon is greater than the first, it is still less

than the circumference of the circle. In a

similar way, if the arcs of this second poly-

gon are bisected, we get a third polygon
whose perimeter approaches yet nearer to

the circumference of the circle. By continu-

ing this process, a polygon may be obtained

as nearly equal to the circumference of a

circle as we please. The circumference of
^

the circle is thus the limiting value of the

perimeter of an inscribed polygon, when the number of its sides is

increased indefinitely.

In general, when a variable magnitude x continually approaches

nearer and nearer to a constant value n so that x can be made to

differ from n by a quantity less than any assignable magnitude, n

is said to be the limiting value of x.

From page 5, it follows that dxjdt is the limiting value of

r/8, when t is made less than any finite quantity, however small.

This is written for brevity

dx__ Bx

dt
~

TT'
= ar

in words "
dxjdt* is the limiting value of 8x/8t whendU becomes

zero" (relative zero, i.e., small without limit). This notation is

frequently employed.

*
Although differential quotients are, in this work, written in the form "dx/dt,"'

. . .
,
the student in working through the examples and demonstrations, should

write -T,
--

. . . The former method is used to economise space.
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(ii)
The value of a limiting ratio depends on the relation be-

tween the two variables. Strictly speaking, the limiting value of the

ratio Sx/8t has the form , and as such is indeterminate.* But

for all practical purposes the differential coefficient dx/dt is to be

regarded as a fraction or quotient (hence the German " Differential-

quotient "). The quotient dx/dt may also be called a "rate-

measurer," because it determines the velocity or rate with which

one quantity varies when an extremely small variation is given

to the other. The actual value of the ratio dx/dt depends on the

relation existing between x and t.

Consider the following three examples (De Morgan) :

(1) If the point P move on the circumference of the circle towards a fixed

point Q (Fig. 2), the arc x will diminish at the same time as the chord y. By
bringing the point P sufficiently near to Q we obtain an arc and its chord

FIG. FIG. 3. FIG. 4.

each less than any given line, that is, the arc and the chord continually

approach a ratio of equality. Or, the limiting value of the ratio SyjSx is

unity.

(2) If ABC (Fig. 3) be any right-angled triangle such that AB = BC.

By Pythagoras' theorem or Euclid, i., 47, and vi., 4,

If a line }&, moving towards A, remains parallel to BC, this proportion will

remain constant even though each side of the triangle ADE is made less

than any assignable magnitude, however small. That is

Sx dx 1

*
Indeterminate, because % may have any numerical value we please. It is not

difficult to see this, e.g.,

% = 0, because 0x0 = 0; # = 1, because Ox 1 = 0;

$ = 2, because x 2 =
; % = 15, because x 15 = 0;

= 999,999, because x 999,999 = 0, etc.
'
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D
(3) Let ABC be a triangle inscribed in a circle (Fig. 4). Draw AB per-

pendicular to BC. Then by Euclid, vi., 8f

BC-.AC = AC:DC = x:y.

If A approaches C until the chord AC becomes indefinitely small, DC will

also^ become indefinitely small. The above proportion, however, remains.

When the ratio BC : AC becomes infinitely great, the ratio of AC to DC will

also become infinitely great, or

Sx dx

It therefore follows at once that although two quantities may
become infinitely small their limiting ratio may have any finite or

infinite value whatever.

7. The Differential Coefficient of a Differential Coefficient.

It will be evident from 2, that the differential coefficient doe&

not necessarily measure the absolute rate of increase during the

whole process of formation of hydrogen chloride, but rather the

rate of formation of that compound which would occur if the-

velocity remained during the whole interval the same as it was

during the extremely short interval of time dt.

In the same reaction, if the hydrogen chloride had been allowed

to remain mixed with the other reacting gases, the velocity of the-

chemical reaction would gradually decrease as the amount of

hydrogen chloride present increased. In other words, the velo-

city of the reaction would be retarded.

If we consider the number of cubic centimetres of hydrogen
chloride formed per second, the rate of change of the velocity of

the reaction is evidently the limit of the ratio 8v/Bt. A retardation *

is equivalent to a negative acceleration. If / denotes the acceler-

ation, then a retardation must be denoted by / with a negative

sign, or,

/= -Lt
t = Q

=--
But from (1) 2, v is equal to dx/dt, and hence

/-XSA
*

* The meaning of the term " acceleration
"

is explained in elementary dynamics.
If a body moves with an increasing velocity its motion is said to be accelerated.

Acceleration means the rate at which the velocity of a body changes.
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which is more conveniently written

an expression denoting the momentary rate of increase in the

velocity of the action due to the presence of increasing amounts

of hydrogen chloride.

The ratio d'2x/dt2 is called the second differential coefficient

of x with respect to t.

Just as the first differential coefficient of x with respect to t

signifies a "velocity," the second differential coefficient of x with

respect to t denotes an " acceleration ".

In order to fix these ideas we shall consider a familiar ex-

periment, namely, that of a stone falling from a vertical height.

Observation shows that the velocity of the descending stone is

changing from moment to moment. The above reasoning still

holds good. We first find the distance (ds) traversed during any

infinitely short interval of time (dt), that is

dsfdt = v.

We next consider the rate at which the velocity changes from one

moment to another and obtain

dv/dt =
f. .

Substituting for v, we obtain the second differential coefficient

ffis

a?"''

which represents the rate of change of velocity or the acceleration

at any instant of time. In this particular example the acceleration

is due to the earth's gravitational force, and g is usually written

instead of/.

In a similar way it could be shown that the third differential

coefficient would represent the rate of change of acceleration from

moment to moment, and so on for the higher differential coefficients

dn
xldt

n
, which are seldom, if ever, used in practice. A few words

on notation.

8. Notation.

Strictly speaking the symbols 8x, St . . . should be reserved for small

finite quantities ; dx, dt . . . have no meaning per se. As a matter of fact the

symbols dx, dt . . . are constantly used in place of Sx, St. . . . It is perhaps

needless to remark that 5, d, d? . . . do not denote algebraic magnitudes.
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In the ratio ^-^ is a symbol of an operation performed on x, as much as

the symbols
"

-r
"

or "/" denote the operation of division. In the present

5x
case tlie operation lias been to find the limiting value of the ratio -^

when St is

ninth' smaller and smaller witlwut limit ; but we constantly find that dxjdt Is

used when S.r/5/ is intended. The notation we are using is due to Leibnitz.

Newton, the discoverer of this calculus, superscribed a small dot over the

Dependent variable for the first differential coefficient, two dots for the second,

thus a-, a; ... In special cases, besides dyfdx and y, we may have
-?-.(//), dy

x
,

d?y
/ c( N. -'

a:y , Cj,
x' . . . for the first differential coefficient ; j-g, ?/, ( >-

J y, ,vv x" . . .

for the second differential coefficient
; and so on for the higher coefficients or

derivatives as they are sometimes called. The operation of finding the value

of the first differential coefficient of any expression is called differentiation.

The differential calculus is that branch of mathematics which deals with

these operations.

9. Functions.

If the pressure to which a gas is subject be altered, it is known
that the volume of the gas changes in a proportional way. The

two magnitudes, pressure p and volume f, are interdependent.

Any variation of the one is followed by a corresponding variation

of the other. In mathematical language this idea is included in

the word "function
"

;
v is said to be a function of p. The two

related magnitudes are called variables. Any magnitude which

remains invariable during a given operation is called a constant.

In expressing Boyle's law for perfect gases we write this idea

thus :

(dependent variable] = f (independent variable),

or v =
f(p),

meaning that " v is some function of p". There is, however, no

particular reason why p was chosen as the independent variable.

The choice of the dependent variable depends on the conditions of

the experiment alone. We could here have written

just as correctly as v =
f(p). In actions involving time it is

customary, though not essential, to regard the latter as the in-

dependent variable, since time changes in a most uniform and

independent way. Time is the natural independent variable.

In the same way the area of a circle is a function of the radius,
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so is the volume of a sphere ;
the pressure of a gas is a function

of the density ;
the volume of a gas is a function of the tempera-

ture
;
the amount of substance formed in a chemical reaction is a

function of the time
;
the velocity of an explosion wave is a func-

tion of the density of the medium
; the boiling point of a liquid is

a function of the atmospheric pressure ; the resistance of a wire to

the passage of an electric current is a function of the thickness of

he wire ; the solubility of a salt is a function of the temperature,

etc.

The independent variable may be denoted by x when writing
in general terms, and the dependent variable by y. The relation

between these variables is variously denoted by the symbols :

y = f(x); y =
<j>(x); V = FW> y =

*(*)'> V =
/i(*0

*

Any one of these expressions means nothing more than that "y i&

some function of x".

If x
lt yl ;

x.
2 , 2/2 ; #

3 , yz ,
. . . are corresponding values of x and

y, we may have

y = f(x) ; y\
= /to) ; y* = /to)

"Let?/ =/(#)" means "take any equation which will enable

you to calculate y when the value of x is known."

The word "function" in mathematical language thus implies

that for every value of x there is a determinate value of y. If v^
and pQ

are the corresponding values of the pressure and volume of

a gas in any given state, v and p their respective values in some
other state, Boyle's law states that

pv = pQ
v .

Hence, p = p^/v ; or, v = p v /p.

The value of p or of v can therefore be determined for any

assigned value of v or p as the case might be.

A similar rule applies for all physical changes in which two

magnitudes simultaneously change their values according to some

fixed "law. It is quite immaterial, from our present point of view,

whether or not any mathematical expression for the function f(x)

is known. For instance, although the pressure of the aqueous

vapour in any vessel containing water and steam is a function of

the temperature, the actual form of the expression or function

* For ". . ." read "etc." or "and so on".
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showing this relation -is not known; but the laws connecting the

volume of a gas with its temperature and pressure are known

expressions Boyle and Gay Lussac's laws. The concept thus

remains even though it is impossible to assign any rule for cal-

culating the value of a function. In such cases the corresponding
values of each variable can only be determined by actual obser-

vation and measurement. In other words, f(x) is a convenient

symbol to denote any mathematical expression containing x.

From pages 5 and 13, since

*-/(*),
the differential coefficient dyldx is another function of x, say /(a?),

dyidx = f(x), or df(x)/dx = f(x).

Similarly the second derivative, d-y/dx
2

,
is another function of x,

say/,
df(x)ldx =

f'(x) ; d*y/dx* =/ ; d?f(x)ldx* =/ ;

and so on for the higher differential functions.

The above investigation may be extended to functions of three

or more variables. Thus the volume of a gas is a function of the

pressure and temperature. We have tacitly assumed that the

temperature was constant in our preceding illustration. If the

pressure and temperature vary simultaneously,

v =
f(p, 0).

These ideas will be developed later on.

It might be pointed out that the methods of the calculus are

usually applied to changes in which the independent variable

varies continuously, or is a continuous function of the dependent
variable

;
discontinuous functions when they do arise only occur

for special values of x. See "
Continuity and Discontinuity,"

page 118.

10. Differentiation.

Before a knowledge of the instantaneous rate of change, dy/dx,
can be of any practical use, it is necessary to know the actual

relation,
"
law," or " form "

of the function connecting the varying
quantities one with another.

( 69 may now be read.)
The differential calculus is not directly concerned with the

establishment of any relation between the quantities themselves,
but rather with the inquiry into the momentary state of the body.

B
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This momentary state is symbolised by the differential coefficient,

which thus conveys to the mind a perfectly clear and definite

conception altogether apart from any
numerical or practical application.

The mechanical operations of finding

the differential coefficient of one variable

with respect to another in any expres-

sion are no more difficult than ordinary

algebraic processes. Before describing

the practical methods of differentiation

it will be instructive to study a geo-

metrical illustration of the process.

Let x (Fig. 5) be the side of a square,

and let there be an increment in the area of the square due to an

increase of h in the variable x.

The original area of the square = x2

The new area = (x + h)
2

The increment in the area = (x + h)
2 - x2 = 2xh + IP . (3)

This equation is true, whatever value be given to h. The

smaller the increment h the less does the value of h2 become.

If this increment h ultimately become indefinitely small, then hz
,

being of a very high order of magnitude, may be neglected. For

-example, if when x = 1,

h = 1, increment in area 2 + 1
;

fc = A, ='2 + T^;
= -002 +

1 . 00 ;. 000 , etc.

If, therefore, dy denotes the infinitely small increment in the

area (y) of the square corresponding to an infinitely small incre-

ment dx in two adjoining sides (x), then, in the language of

differentials,

increment y = Zxh, becomes, dy = %x.dx.

(See the historical note, page 20.)

The same result can be deduced by means of limiting ratios.

For instance, consider the ratio of any increment in the area (y)

to any increment in the length of a side of the square (x).

increment y
h
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and when the value of h is zero

EXAMPLES. (1) Show, by similar reasoning to the above, that if the three

adjoining sides (x) of a cube receive an increment /*, then Lth = ^ = 3xz
.

(2) Prove that if the radius (r) of a circle be increased by an amount h,

the increment in the area of the circle will be (2rh + h2
)
v. Show that the

limiting ratio (dyjdx) in this case is 2irr.

The former method of differentiation is known as " Leibnitz's

method of differentials," the latter,
" Newton's method of limits".

It cannot be denied that while Newton's method is rigorous,

exact, and satisfying, Leibnitz's at once raises the question :

11. Is Differentiation a Method of Approximation only?

The method of differentiation might at first sight be regarded

as a method of approximation, for these small quantities appear

to be rejected only because this may be done without committing

any sensible error. For this reason, in its early days, the calculus

was subject to much opposition on metaphysical grounds. Bishop

Berkeley called these limiting ratios " the ghosts of departed quan-

tities". A little consideration, however, will show that these

small quantities must be rejected in order that no error may be

committed in the calculation. The process of elimination is

essential to the operation.

Assuming that the quantities under investigation are con-

tinuous, and noting that the smaller the differentials the closer

the approximation to absolute accuracy, our reason is satisfied to

reject the differentials, when they become so small as to be no

longer perceptible to our senses. The psychological process that

gives rise to this train of thought leads to the inevitable conclusion

that this mode of representing the process is the true one. More-

over, the validity of the reasoning is justified by its results.

The following remarks on this question are freely translated

from Carnot's Reflexions sur la Metaphysique du Calcul In-

finitesimal.
" The essential merit, the sublimity, one may say,

of the infinitesimal (or differential) method lies in the fact that it

is as easily performed as a simple method of approximation, and

as accurate as the results of an ordinary calculation. This im-
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mense advantage would be lost, or at any rate greatly diminished,

if, under the pretence of obtaining a greater degree of accuracy

throughout the whole process, we were to substitute for the

simple method given by Leibnitz * one less convenient and less

in accord with the probable course of the natural event. If this

method is accurate in its results, as no one doubts at this day ;
if

we always have recourse to it in difficult questions, what need is

there to supplant it by complicated and indirect means? Why
content ourselves with founding it on inductions and analogies

with the results furnished by other means when it can be de-

monstrated directly and generally, more easily, perhaps, than any
of these very methods ?

" The objections which have been raised against it are based

on the false supposition that the errors made by neglecting in-

finitesimally small quantities during the actual calculation are

still to be found in the result of the calculation, however small

they may be. Now this is not the case. The error is of necessity

removed from the result by elimination. It is indeed a strange

thing that every one did not from the very first realise the true

character of infinitesimal quantities, and see that a conclusive

answer to all objections lies in this indispensable process of

elimination." (Paris, p. 215, 1813.)

HISTORICAL NOTE. The beginner will have noticed that, unlike algebra
and arithmetic, higher mathematics postulates that number is capable of

gradual growth. The differential calculus is concerned with the rate at which

quantities increase or diminish. There are three modes of viewing this

growth :

. 1. Leibnitz 1

s "method of infinitesimals or differentials". According to

this, a quantity is supposed to pass from one degree of magnitude to another

by the continual addition of infinitely small parts, called infinitesimals or

differentials. Infinitesimals may have different orders of magnitude. Thus,
the product dx . dy is an infinitesimal of the second order, infinitely small in

comparison with the product y . dx, or x . dy.

In the preceding section
( 10, see also Fig. 6, 12, and Fig. 8, 21) it

was shown that when each of two sides of a square receives a small increment

h, the corresponding increment in the area is 2xh + h2 . When h is made

indefinitely small and equal to say dx, then (dx)* is vanishingly small in

comparison with x . dx. Hence,

dy = 2x . dx.

* Isaac Newton discovered the fundamental process of the "
differential

"
calculus

in 1665-69. Leibnitz improved the notation in 1677. Leibnitz is also said to have

made the discovery independently of Newton.
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In calculations involving quantities which are ultimately made to ap-

proach the limit zero, the higher orders of infinitesimals may be rejected at

any stage of the process. Only the lowest orders of infinitesimals are, as a

rule, retained. See (5), page 523.

2. Newton's " metliod of rates or fluxions ". Here, the velocity or rate

with which the quantity is generated is employed. The measure of this

velocity is called a fluxion. A fluxion, written .f, y, . . . is equivalent to our

dxldt,dyjdt, . . .

These two methods are modifications of one idea. It is all a question of

notation or definition. While Leibnitz referred the rate of change of a

dependent variable */, to an independent variable x, Newton referred each

variable to "
uniformly flowing

" time. Leibnitz assumed that when x receives

an increment dx
t y is increased by an amount dy. Newton conceived these

changes to occupy a certain time dt, so that y increases with a velocity y, as

x increases with a velocity x. This relation may be written symbolically,

y dy
dx = xdt, dy = i/dt, and therefore, = -TV

The method of fluxions is not in general use, perhaps because of its more

abstruse character. It is occasionally employed in mechanics.

3. Newton's "method of limits". This has been set forth in 2, 6, et

seq* The ultimate limiting ratio is considered as a fixed quantity to which

the ratio of the two variables can be made to approximate as closely as we

please.

The methods of limits and of infinitesimals are employed indiscriminately

in this work, according as the one or the other appeared the more instructive

or convenient. As a rule, it is easier to represent a process mathematically

by the method of infinitesimals. The determination of the limiting ratio

frequently involves more complicated operations than is required by Leibnitz's

method. (Compare 85, and 86.)

"The limiting ratio," says Carnot (/. c., p. 210), "is neither more nor less

difficult to define than an infinitely small quantity. ... To proceed rigor-

ously by the method of limits it is necessary to lay down the definition of a

limiting ratio. But this is the definition, or rather, this ought to be the

definition, of an infinitely small quantity." It follows, therefore, that the

psychological process of reducing quantities down to their limiting ratios is

equivalent to the rejection of terms involving the higher orders of infinitesi-

mals. These operations have been indicated side by side in 10.

The earlier part of Professor Williamson's article on the "Infinitesimal

Calculus," in the Encyclopaedia Britannica (9th edit.), contains some interest-

ing details on the evolution of the calculus.

We may now take up the routine processes of differentiation.

* The method of limits is sometimes said to have been suggested by d'Alembert.

But this sarant has stated positively iu the Encyclopedic Mathematique (1784-1789),

1'art.
"
Differentiel," that he has but interpreted the later views of Newton set forth in

The Principia.
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12. The Differentiation of Algebraic Functions.

An algebraic function of x is an expression containing terms

which involve only the operations of addition, subtraction, multi-

plication, division, evolution (root extraction) or involution. For

instance, x2
y + $x + y%

- ax = 1 is an algebraic function. Func-

tions that cannot be so expressed are termed transcendental

functions. Thus, sin x =
y, log x =

y, e
x = y are transcendental

functions.

On page 18 a method was described for finding the differential

coefficient of y = x'2
, by the following series of operations :

(1) Give an arbitrary increment h to x in the original function ;

(2) subtract the original function x2 from the new value of

(x + h)
2 found in (1);

(3) divide the result of (2) by h the increment of x
;

(4) find the limiting value of this ratio when h = 0.

This procedure must be carefully noted ;
it lies at the basis of

all processes of differentiation. In this way it can be shown that

if y = x2
, dy/dx 2x,

if y = z3
, dy/dx = 3z2

,

if y = x4
, dy/dx 4#3

,
etc.

(1) To find the differential coefficient of any power of a variable.

By actual multiplication we shall find that

(x + 7*)
2 =

(x + h) (x + h) = x* + 2hx + li
z

;

(x + lif = (x + h)*(x + h)
= x*

Continuing this process as far as we please, we shall find that

(x + fc)
= a" + rca*- ife+

n
(
n ~

9

1)s- 2
fe
a + . . . + "ajfe"- 1 + ft". (1)

This result, known as the binomial theorem, enables us to raise any ex-

pression of the type x + h to any power of n (where n is positive integer, i.e.,

a positive whole number, not a fraction) without going through the actual

process of successive multiplication. Exactly the same thing holds for (x
-

h)
n

.

To find the differential coefficient of

y = xn .

Let each side of this expression receive a small increment so that

(y + h')
- y =

(incr. y)
=

(x + h)
- xn .

From the binomial theorem, (1) above

(incr. y)
= nxn ~ lh + n(n

-
l)x

n ~ 2
/i

2 + . . .
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Divide by increment x, namely h.

. re)

Hence when /i is made zero

7 . (tncr. y) _ Lii , (x + fe)
- xn _ _ 1L

'*-(7S^)-
w'A=o s-

That is to say

*.3^ .*"-!. ... (2)
dx dx

Hence the rule : to find the differential coefficient of any power

of x, diminish the index by unity and multiply the power of x so

obtained by the original exponent (or index).

EXAMPLES. (1) If y = XK
,
show that dy/dx = 6x5

.

(2) If y = x, show that dy/dx = 20z19
.

(3) If y = a(x
5
), show that dyjdx = a(5x*} = 5ax*.

(4) If the diameter of a spherical soap bubble increases uniformly at the

rate of 0-1 centimetre per second, show that the capacity is increasing at the

rate of O2ir centimetre per second when the diameter becomes 2 centimetres.

Note : y = ^irD
3

, (23), page 492 ;

,
.-. dy = x TT x 22 x 0-1 = 0-2ir.

(2) To find the differential coefficient of the sum or difference of

any number of functions. Let u, v, w . . . be functions of x ; y
their sum. Let u

t
v
ly
w

lt
. . .

, ylt
be the respective values of

these functions when x is changed to x + h, then

y = u + v + w+. . .
; y 1

=
MJ + t\ + w-^ + . . .

Hence yl
- y = (^ -

u) + (^
-

v) + (w 1
-

w) + . . .
,

that is (incr. y)
=

(incr. u) + (incr. v) + (incr. w) + . . .
,

dividing by h

(incr. y) (incr. u) (incr. v) (incr. w)- ^= ~
_|_

_
-|- _|_ .

. j

h h h h

th ._ . .
(incr. x) dx dx dx dx

If some of the symbols had had a minus instead of a plus sign,

a corresponding result would have been obtained. For instance,

if y = u - v - w -
. . . ,

then to_ = to _ dv _ to _ (f)dx dx dx dx

The differential coefficient of the sum or difference of any num-
ber of functions is, therefore, equal to the sum or difference of the

differential coefficients of the several functions.
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(3) To differentiate a polynomial
* raised to any power. Let

y = (ax + x^
n

-

Eegarding the expression in brackets as one variable raised to the

power of n, we get

dy = n (ax + a?
2
)"

~ J
d (ax + x2

).

Differentiating the last term,

^.
= n(ax + a?)

n - l

(a + 2x). . . (5)

Thus, to find the differential coefficient of a polynomial raised

to any power, diminish the exponent of the power by unity and

multiply the expression so obtained by the differential coefficient

of the polynomial, and the original exponent.

(4) The differential coefficient of any constant term is zero.

Since a constant term is essentially a quantity that does not vary,

if y =
c, dy must be absolute zero. Let

y = xn + C

then (incr. y) = (x + h)
n + c -

(x
n + c)

Lth
.

=
-

(incr. x) dx

where the constant term has disappeared.

(5) To find the differential coefficient of the product of a variable

and a constant quantity. Let

y = axn
; (incr. y)

= a (x + h)
n - axn

;

Therefore

* A polynomial is an expression containing two or more terms connected by plus

or minus signs. Thus, a + bx
;
ax + by + z, etc. A binomial contains two such

terms.

t Note I! = l;2! = lx2;3! = lx2x3;w! = lx2x3x . . . x (n
-

2) x (n
-

1) x n.

Strictly speaking, 0! has no meaning ; mathematicians, however, find it convenient

to make 0! = 1. This notation is due to Kramp.
" n\

"
is read "

factorial n ".
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The differential coefficient of the product of a variable quantity
and a constant is thus equal to the constant multiplied by the

differential coefficient of the variable.

EXAMPLES. Some illustrations of this process have been given in pre-

ceding examples.

(1) If y = (1
-

u.-
2
)

3
, show that dy/dx = - 6x (1

- z2
)

2
.

(2) If y = x - 2z2
,
show that dyjdx = 1 - 4z.

(3) Young's formula for the relation between the vapour pressure p and

the temperature of isopentane at constant volume is, p = be -
a, where a

and b are empirical constants. Hence show that the ratio of the change of

pressure with temperature is constant and equal to b.

(4) Mendelteff's formula for the superficial tension s of a perfect liquid at

Any temperature 6 is, s = a -
bO, where a and b are constants. Hence show

that rate of change of s with is constant. Ansr. - 6.

(5) Calendar's formula for the variation of the electrical resistance R of

a platinum wire with temperature is, B = R (l + o0 + )80
2
), where a and ft

are constant. Find the increase in the resistance of the wire for a small rise

of temperature. Ansr. dR = RQ (a + 200) d6.

(6) If the volume of a gramme of water varies as 1 + (0
-

4)
2
/144,000, where

denotes the temperature (C), show that the coefficient of cubical expansion
of water at any temperature is equal to -000013889 K (0

-
4), where K is the

constant of proportion (2), page 487.

(7) A piston slides freely in a circular cylinder (diameter 6 in.). At what
rate is the piston moving when steam is admitted into the cylinder at the

rate of 11 cubic feet per second ?

Let v denote the volume, x the height of the piston at any moment.
Prom (25), page 492,

v = v()
2x

;
.-. dv = if(^fdx.

-

But we require the value of dxjdt. Divide the last expression through with

dtt let IT = -V-,

(8) If the quantity of heat (Q) necessary to raise the temperature of a gram
of solid from to is represented by

Q = a6 + be2 + C03

^where a, 6, c, are constants), what is the specific heat of the substance at ?

Hint. Compare the meaning of dQfdO with your definition of specific heat.

Ansr. a + 260 + 3c02 .

(6) To find the differential coefficient of the product of any
number of functions. Let

y = uv

where u and v are functions of x. When x becomes x + h, u, v

and y become u
lt
vv ylt

or U
Y
= u + h, v

l
= v + h . . . Then
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add and subtract uv
l
from the second member of this last equation f

and transpose the terms so that

or (incr. y) = u(incr. v) + (v + h) (incr. u).

Divide by h and find the limit when h =

(incr. y) dv du
h =

(incr. x) dx dx'

dy d(uv) dv du
or -f- = j

^ = u-j + v-j . (Q\dx dx dx dx

In the language of differentials

dy = d(uv) = udv + vdu. ... (9)

Similarly, by taking any number of functions, say

y = uvw.

Put vw = z then y = uz.

dv du dz
From (8) =^ + u-& -

Divide through by y or its equivalent uz and

1 dy 1 du I dz

y dx u dx z dx

Substituting vw for z we get

1 dz _ 1 dv 1 dw
z dx v dx w dx

dy du dv dw
V
dx

and so on for the products of a greater number of terms.

To find the differential coefficient of any number of terms r

multiply the differential coefficient of each separate function by
the product of all the remaining functions and add up all the

results.

This may be illustrated by a geometrical figure similar to that

of page 18. In the rectangle

(Fig. 6) let the unequal sides

be denoted by x and y. Let

x and y be increased by their

differentials dx and dy. Then

the increment of the area will

FIG- 6- be represented by the shaded

parts, which are in turn represented by the areas of the parallelo-

grams xdy + ydx + dxdy, but at the limit dxdy vanishes, as.

previously shown.

av u,w
x-.fy.

-= = VWT~ + UW-T~ + UV~T~t (*")
dx dx dx
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EXAMPLES. (1) Show geometrically that the differential of a small incre-

ment in the capacity of a rectangular solid figure whose unequal sides are

x, y, z is denoted by the expression xydz + yzdx + zxdy. Hence, show that

if an ingot of gold expands uniformly in its linear dimensions at the rate of

0*001 units per second, its volume (V) is increasing at the rate of dV/dt = O'llO

units per second, when the dimensions of the ingot are 4 by 5 by 10 units.

(2) If y = (x
-

1) (x
-

2) (x
-

3), dy/dx = 3z2 - 12z + 11.

(3) If y = x*(l + az2
) (1

- az2
), dyjdx = 1x - 6a?x\

(7) To find the differential coefficient of a fraction or quotient.

u
Let </

= ->

where u and v are functions of x. When x becomes x + h, u v

and y become respectively u^ v
l
and yv such that u^

= u + h, etc.

Then y = u^v^ and
u

V, - y =
l

V
l

V VjV

add and subtract u/vr Then divide by h and

(incr. y)--
(incr. y) / (incr. u)

(incr. a?) \ (incr. x)

(incr. y} / du
h --.---

(incr. x) \ dx

/u\

or dy_ = 3_ _d^_dx . . . (11)
dx dx v'

2

In words, to find the differential coefficient of a fraction or of a

quotient, subtract the product of the numerator into the differ-

ential coefficient of the denominator, from the product of the

denominator into the differential coefficient of the numerator, and

divide by the square of the denominator.

In the language of differentials the last result may be written

in the more useful form :

. . (12)

SPECIAL CASE. If the numerator of the fraction be constant,

say c, then

y = c/x.

dy =
(xdc

-
cdx)/x

2 = - cdx/x2
;
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EXAMPLES. (1) If y = -r^ show that dyldx = 11(1
-

x)
z

.

J. fly

(2) If y =
(1 + z2

)/(l
- a;

2
), show that dy/dx = 4z/(l

- a;
2
)

2
.

(3) If y = a\x
n

,
show that <fy/<&c

= -
na\x

n + l
.

(4) If y = x*l(x*
-

1)
- x^Kx -

1), show that dyldx = 2z/(z
2

I)
2

.

(5) The refractive index (/*) of a ray of light of wave-length A is, according
to Christoffel's dispersion formula,

t /*
=

^o \/2/{ \/l + AO/A
+ N/I - AO/A},

where /i and A are constants. Find the change in the refractive index

corresponding to a small change in the wave-length of the light. Ansr.

dfijd\ = -
J
u3A 2

/{2A
3
Ai

2
V(l

- V/A2
)}-

Tt is not often 80 difficult a differentia-

tion occurs in practice. The most troublesome part of the work is to reduce

- A /A)}/A
2

V(i
-

*o

to the answer given, by multiplying the numerator and denominator of the

right member with the proper factors to get ^
3

. Of course the student is not

using this abbreviated symbol of division. See footnote, page 11.

(8) To find the differential coefficient of a function affected with

any exponent. Since the binomial theorem is true for any ex-

ponent positive or negative, fractional or integral, formula (2) may
be regarded as quite general. To illustrate this consider the three

cases.

CASE I. When n is a positive integer. It follows directly

d(x
n
)--1 = nxn ~ l

.

ax

CASE II. When n is a positive fraction. Let n p/q, where p
and q are any integers,, then

p

y = X'i-

Raising each term to the gth power

y
9 = x*.

By differentiation, using the notation of differentials

qy
q ~ l

dy = px
p ~ 1

dx,

_

But since y = xq
,

M-P
yi-^ = X i

'

By substituting this value of y
9
~ * in the preceding result, we

obtain

dy pxp - l xp/g

dx
~ ~

xp '
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or simplified: ax
= ~X^~'

t
.... (14)

which has exactly the same form as if n were a positive integer.

CASE III. When n is a negative integer or a negative fraction.

Let

y = x
~ w

,
then y = l/x

n
.

Differentiating this as if it were a fraction, (13) above

dy/dx = - nxn ~W,
or, on reduction, ^|

=
^g-*

= - nx~ n -*1
. (15)

Thus the method of page 23 is quite general.

EXAMPLES. (1) Matthiessen's formula for the variation of the electrical

resistance R of a platinum wire with temperature 0, between and 100 is

R = RQ(1
- aQ + b(P)

- 1
. Find the increase in the resistance of the wire for

a small change of temperature. Ansr. dR/dO = R*(a
-

2&0)/# . Note a and;6

are constants.

(2) Siemens' formula for the relation between the electrical resistance of

a metallic wire and temperature is, R = R (l + aO + b x/0). Hence find the

rate of change of resistance with temperature. Ansr. RQ(O, + $b6~ i).

(9) To find the differential coefficient of a function of a function.

Let

y =f(x) and u =
<j>(y).

It is required to find the differential coefficient of u with respect

to x. Let u and y receive small increments so that y l
= y + h

and MJ
= u + h and x

1
= x + h. Then

U-L
- u HI

- u U\
~ y (incr. u) (incr. u) (incr. y)

x
l
- x

~
yl

- y
'

x
l
- x'

or
(incr. x)

~
(incr. y)

'

(incr. x)'

which is true, however small the increment may be. At the limit,

therefore,

du_du dy
dx

~
dy

'

dx ( '

In a similar way if

u =
<j>(w) ;

w =
^(y) ;

and y =
/(or),

and the differential coefficient of u with respect to x is required

since

du du dw dw _ dw dy
dx

=
dw

'

Ttf
and

dx
=

dy
'

dx'

dy du dw dy
'dx-

=
fa'd 'dx

' ' '
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(10) To prove that 4- = 1 --. Since it has just been shown that

du du dy
dx dy

'

dx

is true for all values of x, we may assume that when u = x

dx dy dx !dy

EXAMPLES. (1) If y = xn/(l + x)
n

, show that dyjdx = nxn ~ l
l(l 4- x)

n + l
.

(2) liy= 1/V(1 - a;
2
), show that dy/dx = x\ ^(1 - x2

)*.

(3) Iiy = a+ If *Jx, show that dy/dx = -
% ^x-'

A
.

(4) If y = a + bx/c, show that dyjdx = bjc.

The use of formula (16) often simplifies the actual process of differentia-

tion ;
for instance, it is required to differentiate the expression

(5) u -
N/(a

2 - x2
).

Assume y = a-
2 - x2

. Then u = \V> y = a2 - #2
,
and

dyldx = -x(a? -
x*)-$-

This is an easy example which could be done at sight ;
it is given here to

illustrate the method.

Every type of algebraic expression has now been investigated,

and by the application of these principles any algebraic function may
be differentiated. Before proceeding to transcendental functions

(that is to say, functions which contain trignometrical, logarithmic

or other terms not algebraic), it seems a convenient opportunity

to apply our knowledge to the well-known equations of Boyle and

van der Waals. These equations will also be discussed from other

points of view later on.

13. The Gas Equations of Boyle and van der Waals.

In van der Waals' equation, at a constant temperature,

(p + a/v
2
) (v

-
b)
= constant, . . (1)

where b is a constant depending on the volume of the molecule, a

is a constant depending on intermolecular attraction. Differenti-

ating with respect to p and v
t
we obtain, as on pages 24 and 25,

(v
-

b)d(p + a/v
2
) + (p + a/v

2
)d(v

-
b) = 0,

and therefore

dv ,.// a 2a6\= -(V -b)(p --g-H-xV (2)
dp 7 v v2 vs )

The differential coefficient dv/dp measures the compressibility of

the gas (page 7).

If the gas strictly obeyed Boyle's law, a = b = 0, and we should

have

dv/dp = -
v/p i . . . (3)
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The negative sign in these equations means that the volume of

the gas decreases with increase of pressure. Any gas, therefore,

will be more or less sensitive to changes of pressure than Boyle's

law indicates, according as the differential coefficient of (2) is

greater or less than that of (3), that is according as

(v
-

b)/(p
- alv* + 2ab/vs

)
^ v/p,

or as pv - pb < pv - a/v 4- 2ab/v2
,

or as pb < a/v - 2ab/v'
2

,

-
-. a (2a

or as Pv h
' '

'
'

If Boyle's law were strictly obeyed

pv = constant, .... (5)

but if the gas be less sensitive to pressure than Boyle's law

indicates, so that, in order to produce a small contraction, the

pressure has to be increased a little more than Boyle's law

demands,

pv increases with increase of pressure ;

while if the gas be more sensitive to pressure than Boyle's law

provides for,

pv decreases with increase of pressure.

Some valuable deductions as to interinolecular action have been

drawn by comparing the behaviour of gases under compression in

the light of equations similar to (4) and (5). For this the reader

is referred to the proper textbooks.

But this is not all. From (5), if c = constant, v =
cfp, which

gives on differentiation

dv/dp = -
c/p

2
,

or the ratio of the decrease in volume to the increase of pressure,

is inversely as the square of the pressure. By simple substitution

of p = 2, 3, 4, . . . in the last equation we obtain

dv/dp =
J, i, TV . . .

when c = unity. In other words, the greater the pressure to

which a gas is subjected the less the corresponding diminution in

volume for any subsequent increase of pressure.

14. The Differentiation of Trignometrical Functions.

A trignometrical function is any expression containing trigno-

metrical ratios, sines, cosines, etc. The elementary definitions

of trignometry are discussed on page 493. We may therefore
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pass at once in medias res. There is no new principle to be

learned.

(1) The differential coefficient of sin x is cos x. Let

y = sin x, and y }

= sin (x + h) ;

.-. y1
- y = sin

(a? + h) sin a?.

By the formula (36), page 500,

n h / h\
yl

- y = 2 sin - cos
(
x + ~

).2 \ 2/

Divide by h and

2^L_ JL_ COS
(
X +

h
J V

But the limit of sin 0/0 is unity (page 499),

T- , (incr. i/}Lth = n -. ?-(
= GOSX'

(incr. x)

dy d(sin x}
.'. -= = i-=

' = cos a; (1)

(2) The differential coefficient of cos x is - sin x. Let

y = cos x, and y l
= cos

(a? -f h) ;

yl
- y = COS (a? + /&)

- COS X.

From page 499 y l
-

y = - 2 sin - sin (x + V

or

- a2 V. v* 2

sin h . / h
7 17 *-*** i i"-'

|

/^
|/z,

V 2

and at the limit when /i = 0,

(incr. x)

^% = d(cos*) = _ sina,

^ (2
da; da;

The meaning of the negative sign can readily be deduced from

the definition of the differential coefficient. d(cos x)/dx represents

the rate at which cos a? increases when x is slightly increased.

The negative sign shows that this rate of increase is negative, in

other words, cos a; diminishes as x increases.

(3) The differential coefficient of tanx is sec2x. Using the re-

sults already deduced for sin x and cos x,

Gosx

( d(smx] d(cosx}} f
J cos OJ-i-g

' - sin x--= '
V /

cos2
a:,

\ dx dx //
= (cos

2x + sin2
a?)/cos

2
a?.
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But the numerator is equal to unity (formula (17), page 499). Hence

d(t&n x) 1
2<r t*\

^7 = ^ 2,r.

= * '
'a>

GW; COS .T

In the same way d(cot x)(dx = - cosec2#. ... (4)

The remaining trignometrical functions may be left for the

reader to work out himself. The results are given on page 158.

EXAMPLES. (1) If y = cosnx, dy/dx - ncos*- 1^ . smx.

(2) If y = sin'x, dy/dx = n sin'
- lx . cos x.

(3) If a particle vibrates according to the equation y = a sin (qt
-

f), what

is its velocity at any instant when a, q and e are constant ?

Ansr. v = dy/dt aq cos (qt
-

e).

(4) If y = sin2(na
- -

a), dy/dx = 2wsin (nx
- a)cos(nx -

a).

15. The Differentiation of Inverse Trignometrical Functions.

The Differentiation of Angles.

The equation, sin# =
y, means that x is an angle whose sine is

y. It is sometimes convenient to write this another way, viz.,

meaning that sin
" l

y is an angle whose sine is y. Thus if sin 30 =
|>

we say that 30 or sin~H is an angle whose sine is J. Trigno-
metrical ratios written in this reversed way are called inverse

trignometrical functions. The superscript
" - 1

"
has no other

signification when attached to the trignometrical ratios. Note, if

tan 45 = 1, then tan
~ l l = 45 ; .-. tan (tan

-
*1)

= tan 45.

Their differentiation may be illustrated by proving that the

differential coefficient of sin
~ lx is I/ ,/(!

- x2
).

If y = sin
~ lx t.

then sin y = x, and

dx/dy = cos y ;
or dy/dx = I/cos y.

But we know that

cos'2?/ + sin2
2/
= 1, or cos y = J(l

- sin2
?/)
=

v/(l
- #2

)v

for by hypothesis sin y = x. Hence

dx dx cosy
~

*Jl - x2
'

The ambiguity of the sign means that if any assigned value of

x satisfies the equation y = sin
" l

x, so does TT -
y, %TT - y and in

general HIT y. When y has its least value the angle whose sine

is x is acute. The differential coefficient is then positive, that is

to say,

d(Bm-*x) 1 m
dx ln - "^

C
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Similarly d(cos
" l
x)/dx = - I/ ^/i _ x2

.
- (2)

The differential coefficient of tan
~ lx is an important function,

since it appears very frequently in practical formulae.

If y = tan" 1
;*?, x = tan?/, dx/dy = 1/cos2

^. But (page 499)
cos2

# =
1/(1 + tan2

?/)
=

1/(1 + #2
). Hence

e.^.., . . (3)

d(cot-
l

x)/dx = -
1/(1 + #2

) . . . (4)
The remaining inverse trignometrical functions may be left to the

reader. Their values will be found on page 158.

EXAMPLES. (1) Differentiate y= sin- ^/^(l+a-
2
). Put sin y = x\ N/lT^

hence cos ?/% - da;/ ^(1 + 2
)

s
. But cos y = N/(l

- sin2
?/)
= x/[l

- a-
2
/(l + a;

2
)].

Substituting this value of cosy in the former result we get, on reduction,

dyjdx = 1/(1 + a-
2
)
- the answer required.

<3) If y = tan - 1

^7==' 3!
=

x/j-3^r2
- See formula (19), page 499.

(4) Ity = tan -
*,T + tan -

>1, ^ = o.
x dx

^5) If y = sin -
^cos x), dy/dx = - 1.

16. Logarithms and their Differentiation.

It is proved, in elementary algebra that all numbers may be

represented as different powers of one fundamental number. E.g.,

1 = 10, 2 = 10- 301
,
3 = 10- 477

,
4 = 10- 602

,
5 = 10' 699

,
. . .

The power, index or exponent is called a logarithm, the funda-

mental number is called the base of the system of logarithms.

Thus if

a' = b,

x is the logarithm of the number b to the base a, and is written

x = Ioga6.

For convenience in numerical calculations tables are used in

which all numbers are represented as different powers of 10.

The logarithm of any number taken from the table thus indicates

what power of 10 the selected number represents. Thus if

103 = 1000, 10 1
'0413927 = 11;

then 3 = Iog101000, 1-0413927 = Iog10
ll.

Exactly the same thing is true if the base 10 be replaced by any
other base. Read 188.
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Before finding the relation between the logarithms of a number
to different bases, we shall proceed to deduce the differential co-

efficient of a logarithm. A logarithmic function is any expression

containing logarithmic terms. E.g., y = logx + x'3 .

(1) To determine the differential coefficient of log x. Let

y =
logo;, and y^

= log(x + h).

Then ft -y = log(x + h)
-

logs.

but it is known (page 37) that log a -
log b = log -, therefore

b

(incr. y) _ 1 /x + h\

(incr. x}~ h \ x /'

and
T' ==Lth = Qh^

The limiting value of this expression cannot be determined in its

present form by the processes hitherto used, owing to the nature

of the terms 1/h and h/x. The calculation must therefore be made

by an indirect process. See 103.

Let
x
=
u
then

j log( 1 +-}- . ulogil 4- -),h 8
\ x) x 8

\ */

= -
. logl +

X b
\ U

As h decreases u increases, and the limiting value of u when
h becomes vanishingly small, is infinity. The problem now is to

find what is the limiting value of log( 1 + -
J
when u is infinitely

great. That is to say,

| =
^^.log(l + 3". - (2)

According to the binomial theorem (page 22)

1\" // 1 u(u -
1) 1

dividing out the u's in each term we get

3!
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The limiting value of this expression when u is infinitely great is

evidently equal to the sum of the infinite series of terms

1 +
1
+

2!
+

3[
+

47
+ ' ' ' to infinitv

(
3

)

(see page 230). Let the sum of this series of terms be denoted by
the symbol e. By taking a sufficient number of these terms we
can approximate as close as ever we please to the value of e. If

taken to the ninth decimal place

e = 2-718281828 . . .

This number, like TT = 3'14159265 . . ., plays an important roleiu

mathematics. Both magnitudes are incommensurable and can only
be evaluated in an approximate way (see page 454).

Eeturning now to (2), it is obvious that

This formula is true whatever base we adopt for our system of

logarithms. If we use 10

Iog10
e = 0-43429 . . .

=
(say) M,

and % = d(logux) = M
'

ax ax x

Since loga& = 1 (page 480) we can put expression (4) in a much

simpler form by using a system of logarithms to the base e, then

dy
dx dx x

Logarithms to the base e are called natural or Napierian

logarithms. Logarithms to the base 10 are called Briggsian
or common logarithms.

(2) To find the relation betiveen the logarithms of a number to

different bases. Let n be a number such that

a" = n, or a = logaw,

and (3
b = n, or b = log^w.

Hence aa =
fi

b
.

"
Taking logs

"
to the base a

a = b loga/2
Substitute for a and b and

logaw = log^w . loga# or log^w
= logaw/loga^ . (7)

In words, the logarithm of a number to the base j3 may be obtained

from the logarithm of that number to the base a by multiplying it

by
j

~ For example, suppose a = 10 and (3
= e,

logn = Iog10ra/log10e,
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where the subscript in logr?i is omitted. This is the usual practice.

Hence :

To pass from natural to common logarithms

common log = natural log x 0*4343 } ,Y

Iog10a =
log,/* x 04343 /

'

To pass from common to natural logarithms

natural log = common log x 2-30261
/q,

logea = Iog10
a x 2-3026 J

The number 04343 is called the modulus of the Briggsian or

common system of logarithms. When -required it is written M
or p.*

EXAMPLES. (1) If y = log aor*, show that dyjdx = 4/a?.

(2) If y = xn log x, show that dy/dx - xn - l

(l + n log .r).

(3) What is meant by the expression, 2-71828" x 2 -3W8 = 10"? Ansr. If

n is a common logarithm, then n x 2-3026 is a natural logarithm. Note,

e = 2-71828.

In seeking the differential coefficient of a complex function

containing products and powers of polynomials, the work is often

facilitated by taking the logarithm of each member separately

before differentiation. The compound process is called logarithmic
differentiation.

EXAMPLES. (1) Differentiate y xn/(l + x)
n

.

Here log y = n log x - n log (1 + .r), or dy\y = ndxlx(\ + .r). Hence

dy\dx = ynjx(l + x) = nxn - l
/(l + x)v

+ l
.

(2) Differentiate x*(I + x)
n
/(x

s -
I).

Ansr. {(n + I)*
4 - a? -

(n + 4)ar
-

4}a-
3
.(l + x)

- l
l(x*

-
I)

2
.

(3) Establish (12), 12, by log differentiation. In the same way, show that

d(xyz) = yzdx + zxdy + xydz.

The differential coefficient of complex transcendental functions

can often be easily obtained in this way.

EXAMPLES. The following standard results can now be verified:

(1) If y = log sin x, dy/dx = d(sin x)/sin x = cot x ... (10)

(2) If y = log tan x, dyjdx - 2/sin 2a- . . . . . . (11)

* Note : the logarithm of the product ab is log a + log b.

The logarithm of the fraction a/b is log<
-
log b.

The logarithm of a poicer, say an
,
is n log a, and so on (see page 479). The use of

logarithms is explained in the introductory pages of the table books. Chambers's

Afatliematical Tables is a convenient set to have at hand. Less cumbersome and

cheaper tables are, however, quite as useful for most scientific calculations. See pages

484 and 520.
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(3) If y = log cos x, dy/dx = - tan x (12)

(4) If y = log cot x, dy/dx = -
2/sin 2x (13)

(5) Ity = log sin l
x, dy/dx = -

x/(l
- a:

2
) (14)

(6) Ity = log cos - 1

ar, dyjdx = xf(l
- x2

) (15)

(7) Ity = log tan - 1

a?, dyjdx ='- 2xl(l + x2
) (16)

(8) If y = log cot
-

*x, <fy/<te
=

2<r/(l + z2
) (17)

(9) If y = x(a
2 + xz

)
\/a2 - x2

, dy\dx = (a* + a2x2 - 4a-4)(
2 - x2

)

-
J.

17. The Differential Coefficient of Exponential Functions.

Exponential functions are those in which the variable quantity
occurs in the index. Thus, ax

,
e
x and (a + x)

x are exponential

functions. A few words on the transformation of logarithmic

into exponential functions may be needed.

It is required to transform logy = ax into an exponential

function. Kemembering that log a to the base a is unity, it

makes no difference to any magnitude if we multiply it by
such expressions as logaa, Iog1010, logee, and so on. Thus since

loge(e
ax

)
= ax logee, if logey = ax,

logey = ax logee = logee
ax

;
.-. y = e

ax
,

when the logarithms are removed. In future "
loge

"
will generally

be written "
log ".

EXAMPLES. (1) Show that if log y
-

log y = kct, y = y e
~ kct

.

(2) If log I = - an, I e~ an
.

(3) If 6 = be
~ at

, log b -
log = at.

(4) If logeT
- = 08, Iog101

- - -43430.
J. JU J- *C-

The differentiation of exponential functions may be conveniently

studied in three sections :

(i) Let y = e
x

.

Taking logarithms and then differentiating

dy dy
logy = x loge; = dx, or^ = e

x

dx
'

(ii) Let y = ax
.

As before log y = x log a
;

- = y log a ;

(2)
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(iii)
Let y = x*,

where x and z are both variable. Taking logarithms and differ-

entiating

dy zdx.
logy = z log x; = log xdz + ,

. . dy = tf log xdz + zx*- ldx ... (3)

If x and z are functions of t

dy dz dx"

EXAMPLES. (1) If y = a"*, dyfdx = no, log a.

(2) If y = (a* + x)
2

, dy/dx = 2(a* + x) (a* log a + 1).

(3) If y = x*, dy/dx = x*(l
-

log x}^.

(4) If y = e<?, dyjdx = e* . e<

(5) If y = x*
t dyjdx = x* . ar*{(log.r)

2 + logz + Ijx}.

(6) Magnus' empirical formula for the relation between the pressure of

aqueous vapour and temperature is

p = aW**

where a, 6, y are constants. Show that dpjde = 7 g'

fl

?a . by + e
. This

formula represents the increase of pressure corresponding to a small rise of

temperature from (say) 6 to (6 + 1).

(7) Blot's empirical formula for the relation between the pressure of

aqueous vapour (p) and the temperature (6) is

logp = a + ba.9 -
cftO ; hence = pba.0 log o - pc& log j8.

(8) Required the velocity of a point which moves according to the equation

y = ae - A* cos 2*Y ^ + Y Since velocity = dyjdt

^j
0082* + f + - sin

18. The "
Compound Interest Law "

in Nature.

I cannot pass by the function e* without indicating its great

significance in physical processes. From the above equations it

follows that if

y = Ce"x
; then dy/dx = beax... (1)

where a, b and C are constants, b, by the way, being equal to

aC log,e. C is the value of y when x = 0. (Why ?) It will be

proved later on that this may be reversed, and if

dy
fx = 6 then y = CeT*, . (2)

where a, 6 and C are again constant.
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All these results indicate that the rate of increase of the ex-

ponential function e
x

is e
x

itself. If, therefore, in any physical

investigation we find some function, say <, varying at a rate

proportional to itself (with or without some constant term) we guess

at once that we are dealing with an exponential function. Thus if

dd>

jj-
=

a<f>; we may write < = Cer<x

,
or Ce

~ ax
,

according as the function is increasing or decreasing in magnitude.

Money lent at compound interest increases in this way, and

hence the above property has been happily styled by Lord Kelvin *

" the compound interest law ". A great many natural phenomena
possess this property. The following will repay study :

ILLUSTRATION 1. Compound interest. If 100 is lent out at

5 / per annum, at the end of the first year 105 remains. If

this be the principal for a second year, the interest during that

time will be charged not only on the original 100, but also on the

additional 5. To put this in more general terms, let p be lent

at r / per annum, at the end of the first year the interest amounts

T
to ^oT an(^ ^ Pi be the principal for the second year, we have at

the end of the first year

Pi
=

and at the end of the second year,

p2
=

Pl(l + r/100) = p (l + r/100)
2

.

If this be continued year after year, the interest charged on the

increasing capital becomes greater and greater until at the end of

t years

Instead of adding the interest to the capital every twelve

months, we could do this monthly, weekly, daily, hourly, and so

on. If we are to compare this process with natural phenomena,
we must imagine the interest is added to the principal continuously

from moment to moment. Natura non facit saltus. In this way
we should approximate closely to what actually occurs in Nature.

As a first approximation, suppose the interest to be added to

the principal every month. It can be shown in the same way that

the principal at the end of twelve months, is

p =
Po(l + r/12 . 100)

12
. (4)

*
Quoted from Perry's Calculusfor Engineers (E. Arnold, Loiidon).
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If we consider now the interest is added to the principal every

moment, say t, we may replace 12 by t, in (4), and

r \+
lOOTj}

For convenience in subsequent calculation, let us put JQQ^
=

,
so

that t = ur/lQQ. From (5) and formula (16), page 483,

But (1 + l/u)
n has been shown in (3), page 36, to be equivalent

to e when u is infinitely great ; hence, writing r/100 = x,

p = pQ
e*

I (
6

)

which shows that the exponential function represents the rate of

increase of the principal with time, when the principal is reckoned

from moment to moment.

We could deduce this result in a simpler, but perhaps less in-

structive way. Note that log(l + r/100), and also Iog_p ,
are

-constant. Put the former equal to a. From (3)

dp
dt

= al} '

We guess at once that we are dealing with an exponential func-

tion. Hence we may put, as on page 40,

p = Ceat
.

To find the value of C, note that when t = 0, p =
p^, and therefore

P = W">
which is identical with (6), when we put x = at.

ILLUSTRATION 2. Newton's law of cooling. Let a body have a

uniform temperature Ov higher than its surroundings, it is required

to find the rate at which the body cools. Let denote the tem-

perature of the medium surrounding the body.
In consequence of the exchange of heat, the temperature of the

body gradually falls from O
l
to

Q
. Let t denote the time required

by the body to fall from O
l
to 0. The temperature of the body is

then - above that of its surroundings. The most probable

supposition that we can now make is that the rate at which the

body loses heat
(
- dQ) is proportional to the difference between

its temperature and that of its surroundings. Hence

where k is a coefficient depending on the nature of the substance.
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From the definition of specific heat, if s denotes the specific

heat of unit mass of substance

Q = 8(6- ),

or dQ = sdO.
'

Substitute this in the former expression. Since kfs = constant =
a (say) and = C.

,
we obtain, .

-as-"*..... <7>

or, in words, the velocity of cooling of a body is proportional to

the difference between its temperature and that of its surroundings.
This is Newton's wrell-known law of cooling (Preston's Theory of

Heat, p. 444).

Since the rate of diminution of is proportional to itself, we

guess at once that we are dealing with the compound interest law,.

and from a comparison with (1) and (2) above, we get

B = be
~ * .... (8)

or log b -
log (9 = at. . . . (9)

If O
l represents the temperature at the time t

lt
and #2 the

temperature at the time t
z ,
we have

log b -
log 0j

= aj, and log b -
log 2

= at.2 .

By subtraction

^7-^.log^, . . . (10)
h ~ h *i

a being constant.

The validity of the original
"
simplifying assumption''' as to the

rate at which heat is lost by the body must be tested by comparing
the result expressed in equation (10) with the results of experiment.

If the logical consequence of the assumption agrees with facts,.

there is every reason to suppose that the working hypothesis is

true. For the purpose of comparison we may use Winkelmann's^/

data, published in Wiedemann's Annalen for 1891, for the rate of

cooling of a body from a temperature of 19'9 C. to 0C.*
Hence if 6 denote the temperature of the body at any time

t
2
- t

lf
anS

2
= 19'9, 6>

}
= 0, remembering that in practical work

Briggsian logarithms are used, we obtain, from (10), the expression.

1 9

~^ ' logi~
^ constant

>
sav k-

*
I was led to select this happy illustration of Newton's law from Winkelmann's-

papers (Wied. Ann., 44, 177, 429, 1891) after reading Nernst and Schonflies' Intro-

duction to the Mathematical Treatment of Science.
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The data are to be arranged as shown in the following table

(after Winkelmann) :

0.
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retical results is very poor. Hence it is necessary to seek a second

approximation to the true law.

With this object, Dulong and Pejbit have proposed
v =

b(c
e -

1),

as a second approximation. Here b = 2*037, c = 1-0077. Column
4 shows the velocity of cooling calculated from Dulong and Petit's

law. The agreement between theory and fact is now very close.

This formula, however, has no theoretical basis. It is the result

of a guess.

Stefan's guess is that

v = a{(273 + 0)
4 -

(273)
4
},

where a = 10
~ 9 x 16-72. The calculated results (column 5) are

quite as good as those attending the use of Dulong and Petit's

formula. Galitzine has pointed out that Stefan's formula can be

established on theoretical grounds.
It is a very common thing to find different formulae agree, so

far as we can test them, equally'well with facts The reader must,

therefore, guard against implicit faith in this criterion the agree-

ment betiveen observed and calculated results as an infallible

experimentum crucis.

A little consideration will show that it is quite legitimate to

deduce the numerical values of the above constants from the

experiments themselves. For example, we might have taken the

mean of the values of k in Winkelmann's table above, and applied

the test by comparing the calculated with the observed values of

either t
2
- t

lt
or of 0.

EXAMPLE. To again quote from Winkelmann's paper, if, when the tem-

perature of the surrounding medium is 99 -

74, the body cools so that when
= 119-97, 117-97, 115-97, 113-97, 111-97, 109-97 ;

t = 0, 12-6, 26-7, 42-9, 61-2, 83-1.

Do you think that Newton's law is confirmed by these measurements ?

Hint. Instead of assuming that = 0, it will be found necessary to retain

in the above discussion. Do this and show that the above results must be

tested by means of the formula

1
. Iog10

02
~

0(> = constant.

*,-*,
'10 i-o

To return to the compound interest law.

ILLUSTRATION 3. The variation of atmospheric pressure with

altitude above sea level can be shown to follow the compound
interest law. Let pQ

be the pressure in centimetres of mercury at
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the so-called datum line, or sea level, p the pressure at a height h

above this level. Let p be the density of air at sea level (Hy =
1).

Now the pressure at the se.a level is produced by the weight of

the superincumbent air, that is, by the weight of a column of air

of a height h and constant density p .
This weight is equal to hp .

If the downward pressure of the air were constant, the barometric

pressure would be lowered p centimetres for every centimetre rise

above sea level. But by Boyle's law the decrease in the density

of air is proportional to the pressure, and if p denote the density

of air at a height dh above sea level, the pressure dp is given by

the expression

dp = -
pdh.

If we consider the air arranged in very thin strata, we may regard

the density of the air in each strata as constant. By Boyle's law

PPo
=

PoP, or p = Pop/p .

Substituting this value of p in the above formula, we get

dp p p n n
as" "^

The negative sign indicates that the pressure decreases vertically

upwards. This equation is the compound interest law in another

guise. The variation in the pressure, as we ascend or descend, is

proportional to the pressure itself. Since pQ/po is constant, we
have on applying the compound interest law to (11),

-**
p = constant x e P(>

.

We can readily find the value of the constant by noting that at

sea level h = 0, and p = pQ
. Substituting these values in the last

equation, and remembering that e = 1, constant =
_p ,

Pr

a relation known as Halley's law. Continued p. 213.

ILLUSTRATION 4. The absorption of actinic energy from light

passing through an absorbing medium. A beam of light of in-

tensity I is changed by an amount dl after it has passed through
a layer of absorbing medium dn thick. That is to say

dl = - aldn,

where a is a constant depending on the nature of the absorbing
medium and on the wave length of light. The rate of variation

in the intensity of the light is therefore proportional to the in-
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tensity of the light itself, in other words, the compound interest

law again appears. Hence

-j-
= - al

;
or I = constant x ean .

an

If J denote the intensity of the incident light, then when
n 0, / = J = constant.

Hence the intensity of the light after it has passed through a

medium of thickness n, is

I = I e~ . (13).

The student might profitably read Bunsen and Eoscoe's work
on the absorption of light by different media, in the Philosophical
Transactions of the Eoyal Society for 1857.

ILLUSTRATION 5. Wilhelmy's law for the velocity of chemical

reactions. Wilhelmy as early as 1850 published the law of mass

action in a form which will be recognised as still another example
of the ubiquitous law of compound interest. The statement of

the law of mass action put forward by Harcourt and Esson is

probably the simplest possible. It is
" the amount of chemical

change in a given time is directly proportional to the quantity of

reacting substance present in the system ". (Wilhelmy, Annalen

der Physik und Chemie, 81, 413, 499, 1850. See page, 197.)

If x denote the quantity of changing substance, and dx the

amount of substance which disappears in the time dt, the velocity

of the chemical reaction is

dx

7t
= - kx

'

where k is a constant depending on the nature of the reacting

substance. It has been called the coefficient of the velocity of the

reaction. This equation is probably the simplest we have yet

studied. It follows directly, since the rate of increase of x is

proportional to x, that

x = be
~

,

where b is some constant to be determined.* The negative sign

indicates that the velocity of the action diminishes as time goes on.

Harcourt and Esson's papers in the Philosophical Transactions

for 1866, 1867 and 1895 might be read with advantage and profit.

EXAMPLES. (1) If a volume v of mercury be heated to any temperature 8,

the change of volume dv corresponding to a small increment of temperature

dO, is found to be proportional to v, hence

dv = avdd.

* How ? See page 162.
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Prove /;i.s-.sf7i//'.s fonn/ilti, r = e*9, for the volume of mercury at any tempera-

ture 6- Ansr. ? = be<*9, where /?, b, a are constants. If 6 = 1 we have the

iv.
|
u i red result.

('2) According to Nardenskjuld's solubility lair, in the absence of super-

saturation, for a small change in the temperature (dd), there is a change in

the solubility of a salt (ds) proportional to the amount of salt s contained in

the solution at the temperature 6, or

ds tiKtld

where a is a constant. Show that the equation connecting the amount of

salt dissolved by the solution with the temperature is, s bca-0, where b is a

constant.

(3) If any dielectric (condenser) be subject to a difference of potential, the

density p of the charge constantly diminishes according to the relation

p = be
~ at

,

where b is an empirical constant and a is a constant equal to the product 4ir

into the coefficient of conductivity (c) of the dielectric and the time (t), divided

by the specific inductive capacity (/*), i.e., b = ktrctlfj.. Hence show that the

gradual discharge of a condenser follows the compound interest law. Ansr.

Show dpjdt = p x a negative constant.

(4) One form of Dalton's empirical law for the pressure of saturated

vapour (p) between certain limits of temperature (6) is,

p - aeQ.

Show that this is an example of the compound interest law.

(5) The relation between the velocity v of a chemical reaction and tem-

perature, 0, is LfOL^^f
log v = a + be,

where a and b are constants. Show that we are dealing with the Compound
Interest Law. What is the logical consequence of this law with reference to

reactions which (like hydrogen and oxygen) take place at high temperatures

(say 500), but, so far as we can tell, not at ordinary temperatures ? Look up
*' False Equilibrium" in your Textbook of Physical Chemistry.

19. Successive Differentiation.

The differential coefficient derived from any function of a

variable may be either another function of the variable, or a con-

stant (page 17). The new function may be differentiated again

in order to obtain the second differential coefficient. In the same

way we may obtain the third and higher derivatives.

EXAMPLE. Let y = x3
;

the first derivative is,
d/ =3*2

;

dx

the second derivative is, -^M = 6x ;

axa

the third derivative is, , Jj( = 6 ;

oa-'

the fourth derivative is, = 0.
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It will be observed that each differentiation reduces the index

of the power by unity. If n is a positive integer tne number of

derivatives is finite.

In the symbols (2/)' (y) >
tne superscripts simply de-

note that the differentiation has been repeated 2, 3 ... times.

In differential notation we may write these results

d2
y = 6x . dx 2 *

; d*y = 6dx* *
;

. . .

The successive differential coefficients of

y = sinx
are

y
l = cos x

; y
11 = - sin x

; y
m = - cos x\ y

iv = sin x
;

. . .

The fourth derivative is thus a repetition of the original function,

the process of differentiation may thus be continued without end r

every fourth derivative resembling the original function.

The simplest case of such a repetition is

y = e*,

where y
1 = e

x
; y

11 = e
x

; y
m = e

x
;

. . .

The differential coefficients are all equal to each other and to the

original function.

EXAMPLES. (1) Show that every fourth derivative in the successive

differentiation of y = cosx repeats itself.

(2) If y = log ,r, cPy/dx* = - 6/.r '.

(3) If y = xn
,
d4
yldx

4 = n(n
-

l)(n
-

2)(n
-

3)x
n ~ 4

.

(4) Ky = x- 2
, dtyldx? = - 24a:

- 5
.

(5) If y = log (x + 1), dtyjdx* - -
(x + 1)

~ s
.

Just as the first derivative of x with respect to t measures a

velocity, the second differential coefficient of x with respect to t

measures an acceleration. See page 13.

EXAMPLES. (1) If a material point (P) f move in a straight line AB
(Fig. 7) so that its distance (s) from a fixed point O is given by the equation

s = a sin t,

where a is constant, show that the acceleration due to the force acting on the

particle is proportional to its distance from the fixed point.

FIG. 7.

* Do not confuse these with dy? = 2x. dx; dx3 = 3xz . dx
;

. . .

f A tnaterial point is a fiction much used in applied mathematics for purposes

of calculation, just as the atom is in chemistry. An atom may contain an infinite

number of "material points
"

or particles.



20. THE DIFFERENTIAL CALCULUS.

The velocity is evidently
v = ds/dt = a cos t ;

and the acceleration
dv d*s

49

the negative sign showing that the force (/) is attractive, tending to lessen

the distance of the moving point from O.

To get some idea of this motion find a set of corresponding values of /,

s and v as shown in the following table :

If t =
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EXAMPLES. (1) If y = x*.eax
,
find the value of d*y/dx*. Substitute x*

and enx respectively for v and u in (1). Thus,
v = x*

; .-. dv/dx = 4a;3
, d*v/dx* = 12a;2

,
d3
v/dx

3 = 24x
;

% = e"* ; .. du/dx = aeax
, d^ujdx

2 = a?eax
,
d3
u[dx* = a?eax .

From (1)

ds
y _ dzu dv d?u n(n 1) d*v du n(n l)(n 2) dPv

.

dx*
~

~dx*
n
dx'dx? 2! daT2

'

dx
+ U ~

31

~" '

dx*
'

36aa;2 + 24a;).

If we pretend, for the time being, that the symbols of operation 8

-5-> (T~) ' (w~) '
^n

(
2
)'

rePresen^ the magnitudes of an operation, in an

algebraic sense, we can write

instead of (2). The expression a + ^ is supposed to be developed by the

binomial theorem, page 22, and dvjdx, d^/da;
2

,
. . ., substituted in place of

/ d \ / d \2

\dx)
V%

\dx)
v

'
' ' '' in the result - Equation (3) would also hold good if 3

were replaced by any integer, say n. This result is known as the symbolic

form of Leibnitz' theorem.

(2) If y = logo-, show that d<V/da;
6 = -

21. Partial Differentiation.

Up to the present time we have been principally occupied with

functions of one independent variable x, such that

u=f(x);
but functions of two, three or more variables may occur, say

u =f(x,y,e, .)

where the variables x, y, z, . . . are independent of each other.

Such functions are common. As

illustrations, it might be pointed

out that the area of a triangle

depends on its base and altitude,

JC" the volume of a rectangular box

depends on its three dimensions,

and the volume of a gas depends
FlG - 8 - on the temperature and pressure .

(1) To find the differential of a function of two independent
variables. This can be best done in the following manner, partly
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graphic and partly analytical. In figure 8, the area u of the rect-

angle ABCD, with the sides x, y, is given by the function

u = xy.

Since x and y are independent of each other, the one may be sup-

posed to vary, while the other remains unchanged. The function,

therefore, ought to furnish two differential coefficients, the one re-

sulting from a variation in x, and the other from a variation in y.

First, let the side x vary while y remains unchanged. The

area is then a function of x alone, y remains constant.

.-. (du),
= ydx, ... . . (1)

where (du\ represents the area of the rectangle BB'CC". The

subscript denoting that y is constant.

Second, in the same way, suppose the length of the side y

changes, while x remains constant, then

(du)x = xdy, .... (2)

where (du)x represents the area of the rectangle DD'CC'.

Instead of using the differential form of these variables, we

may write the differential coefficients

fdu\ .. (du\
\-j- I

= y, and
[ -y- I = x :

\dxj, \dy)x
^u , dtt

S r.-ijj--!
where is the symbol of differentiation when all the variables,

ox

other than x, are constant. Substituting these values of x and y in

(1) and (2), we obtain

(du\= ^dx ; (du)x =
^tiy.

Lastly, let us allow x and y to vary simultaneously, the total

increment in the area of the rectangle is evidently represented by
the figure D'ERBCD.

(incr. u) = BB'CC" + DD'CC' + CC'C"E
= ydx + xdy + dx . dy.

Neglecting infinitely small magnitudes of the second order, we get
du = ydx + xdy ; . . . . (3)

dtt , ~ou
du - dx +

which is also written in the form

du -

the former for preference.

du du
du -
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In equations (3) and (4) du is called the total differential of the

^u
function ; ^~dx

the partial differential of u with respect to x when

y is constant ; and ^rdy
the partial differential of u with respect

to y when x is constant. Hence the rule :

The total differential of two (or more) independent variables is

equal to the sum of their partial differentials.

The physical meaning of this rule is that the total force acting

on a body at any instant is the sum of every separate action.

This is nothing more than the so-called principle of .superposition

of small impulses.*

"According to this principle, the total force acting on a particle at any
moment is the sum of all the infinitely small individual actions to wnich

the particle is subjected. This, in reality, means nothing more than that the

total differential represents the total change experienced by the mathematical

function. For instance, if a gas is exposed to variable conditions of tempera-
ture and pressure, the total change in volume is the sum of the changes
which occur at a constant temperature and varying pressure, and at a con-

stant pressure and varying temperature. The total differential, therefore, is

equal to the sum of the partial differentials corresponding respectively to a

changing pressure and to a changing temperature. The mathematical process

thus corresponds with the actual physical change." (Freely translated from

Nernst and Schonflies' Einfiihrung in die matliematiscJie Behandlung der

Naturwissenscliaften, p. 180, 1898.)

In other words, the total change in u when x and y vary is

made up of two parts : (1) the change which would occur in u if

x alone varied, and (2) the change which would occur in u if y
alone varied.

Total variation = variation due to x alone + variation due to y alone.

Equation (4) may be written in a more general manner if we

put u f(x,y), thus

*.*>* + *&>.. . . (

or du = f l

(x)dx + fl
(y)dy,

where the meaning of/
1

(o?) &ndf
l

(y) is obvious.

* Ostwald calls this the "principle of the mutual independence of different pro-

cesses," or the "principle of the coexistence of different reactions," meaning that if a

number of forces act upon a material particle, each force produces its own motion

independently of all the others. (Ostwald, Grundriss der allgemeinen Chemie, Walker's

translation, p. 297.)
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EXAMPLES. (1) If u = x* + x*y + //"

,\du = (3x
2 + 2xy)dx + (a-

2

(2) If u = x log y ; du = log ?/d.r + a- . dy/i/.

(3) .If M = cos x . sin y + sin a; . cos y,

du = (dx + dy) (cos x . cos y - sin x sin y)

= (dx + dy){coa(x + y)}.

(4) If u = xi>, du = yx*
~ ldx + a* log xdy.

(5) The differentiation of a function of three independent variables may
be left as an exercise to the reader. Neglecting quantities of a higher order,

if u be the volume of a rectangular parallelepiped having the three dimensions

x, y, z, independently variable, then

u = xys,

and du = dx + ~dy + dz
; .... (6)

or an infinitely small increment in the volume of the solid is the sum of the

infinitely small increments resulting when each variable changes independently
of the others. In differential notation show also that

du yzdx + xzdy + xydz..... (7)

(6) If the relation between the pressure p, and volume v, and tempera-
ture 6 of a gas is given by the formula pv = R(l + aB), show that the total

change in volume for a simultaneous change of pressure and temperature is

dv = aR . defp
- R(l + o0) . dpIp*.

(7) Clairaut's formula for the attraction of gravitation (g) at different

latitudes (L) on the earth's surface, and at different altitudes (H) above mean
tide level, is

g = 980-6056 - 2-5028 cos 2L - 0-000003H, dynes.

Discuss the changes in the force of gravitation and in the weight of a sub-

stance with change of locality. Note,
"
weight

"
is nothing more than a

measure of the force of gravitation.

(2) To find the differential coefficient of a function of two inter-

dependent variables. If the meaning of the different terms in

^u. Du.,du =
^-dx

+
^dy

is carefully noted, it will be found that the equation is really ex-

pressed in differential notation, not differential coefficients. In

~dii

the partial derivative ^,dx,
^u represents the infinitely small change

that takes place in u when x is increased by an amount dx, y
^)u

being constant
; similarly t)u in ^r~dy stands for the infinitely small

change which occurs when y is increased by an amount dy, x

being constant. If du is the total increment in a function of
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the variables when each variable is individually increased by an

amount (du)y and (du)x ,
then

du (du)y + (du)x .

If the variables x and y are both functions of say t, we have

y =

and du =

We may pass directly from differentials to differential co-

efficients by dividing through with dt, thus

du _ ~bf(x, y) dx ^f(x, y) dy
dt ~tix

'

dt ty df

which is more frequently written

du ~tiu dx ^u dy >
du /du\dx /du\dy

dt ^x
'

dt ^y dt dt \dx ) dt \dy/ dt

When there is likely to be any doubt as to what variables have

been assumed constant, a subscript is appended to the lower

corner on the right of the bracket. The brackets in the second

of equations (8) may be omitted, when there is no chance of

confusing ^u/^x . . . with differential coefficients.

The most general form of (8) for any number of variables is

obtained as follows : If

u = f(xlt
x

2 ,
. . . xn),

where x
ly
x

2 ,
. . . are functions of x, then

du ^u dx
l

~bu dx.2 ^u dxn
~1

=
=N~ ~T~~ ~^~ -N ~T + . . . + A ' ~J (y)

dx ox
l

dx otc
2

dx oxn ax

If, at the same time, x
lt

x.2 ,
. . . are functions of y,

du ~tiu dx, ^u dx.j ^u dxn
-j- = s -^ + A ^J +.--+v^-^' (10)
dy ox

l dy ox
2 dy oxn ay

Equation (8) leads to some interesting results.

If y = uv, where u and v are functions of x, then tyftv = u

and tyfbu = v
; substituting these values in (8), and making the

necessary changes in the letters,* we get our old formula, page 26,

dy dv du
^_ .__ n i

[

i,

dx dx dx

If u is a function of x, such that u = x,

*y = *y + *n ^ n 2>
dx ^x 1)v

'

dx'

^)y dy
since dx/dx is unity. Note the distinction between ^ and ^.

* Note that u, x, y, t of (8) are now to be replaced by y, u, v, and x respectively.

I
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If u is constant,

dy_ty dv

dt
~ ^ '

dx

A formula previously obtained in a different way.

Many illustrations of functions with properties similar to those

required in order to satisfy the conditions of equation (8) may
occur to the reader. The following is typical :

When rhombic crystals are heated they may have different

coefficients of expansion in different directions. A cubical portion

of one of these crystals at one temperature is not necessarily

cubical at another. Suppose a rectangular parallelepiped is cut

from such a crystal, with faces parallel to the three axes of

dilation (see Preston's Theory of Heat, p. 199). The volume of

the crystal is

V = xyz,

where x, y, z are the lengths of the different sides. Hence

^V/tx = yz ; Wfiy = xz ; W/Dz = xy,

Substitute in (6) and divide by dO, where dO represents a slight

rise of temperature, then

dV dx dy dz

dO
= yzdO

+ xz
dO

+ xyd&
where dx;dO, dyfdO, dz/dO represent the coefficients of expansion

(page 7) along the three directions.

The coefficient of cubical expansion is obtained by putting
x = y = z = 1, when

dx dy dz
a =

dO
+

dd
+

'd~6

)

where dx/dO or ^x/DO, etc., represent the linear expansions (A) in

each direction. For isotropic bodies

dx/de = dyjdO = dz/d6, and hence a = 3A.

EXAMPLES. (1) Loschmidt and Obermeyer's formula for the coefficient of

diffusion of a gas at 6 (absolute) is

760

where k is the coefficient of diffusion at C. and p is the pressure of the gas.

Required the variation in the coefficient of diffusion of the gas corresponding
to small changes of temperature and pressure. Note k and are constant.

Put a = fc /7600 ; ^de = apn$
n - ]

. de > ^dp = a8*dp. But

dk = d6 + dp. .-. dk = aO- *(npde + edp).
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(2) Biot and Aragd's formula for tlie index of refraction (u) of a gas or

vapour at 6 and pressure p is

* " l " r+~^ '

760'

where OQ is the index of refraction at 0, a the coefficient of expansion of the

gas with temperature. What is the effect of small variations of temperature
arid pressure on the index of refraction ? Ansr. To cause it to vary by an

u - I/ dp
amount du = '

22. Euler's Theorem on Homogeneous Functions.

The following discussion is convenient for reference :

To show that if u is an homogeneous function
*

of the nth degree, say u =
where a + ft = n, then

By differentiation of the homogeneous function,

u =
axa-yfr + bx*l

yP
l + ...:

where o + /3
= o1 + /8

1 = . . . = n, we obtain

lyp ; and

Hence

The theorem may be extended to include any number of variables (see foot-

note, page 340).

*&u ^u ~
(3?t

EXAMPLES. (1) If u = x*y +~xy* + Sxyz, then ^^ + y~^ + z^ ~ ^u -

Prove this result by actual differentiation. It of course follows directly from

Euler's theorem, since the equation is homogeneous and of the third degree.

(2) If u = -
2 2 x^fr

+ y^7
= u

>
since the equation is of the first

degree and homogeneous..

(3) Put Euler's theorem into words. Ansr. In any homogeneous function,

the sum of the products of each variable with the partial differential coefficients

of tJie original function with respect to that variable is equal to tlie product of

the original function with its degree.

* An homogeneous function is one in which all the terms containing the variables

have the same degree. Examples : x2 + bxy + z2
;
x* + xyz* + y?y + x2z2 are homo-

geneous functions of the second and fourth degrees respectively.

t The sign "2" is to be read " the sum of all terms of the same type as . . .,"

or here " the sum of all terms containing x, y and a constant ". The symbol
" n "

is

sometimes used in the same way for " the product of all terms of the type ".
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23. Successive Partial Differentiation.
\

We can get the higher partial derivatives by successive differ-

entiation, uaing processes analogous to those used on page 47.

Thus when _ rf + . +afy,

repeating the differentiation,

g = 2(1 +r>); ^ = 2(1 + 3^), . (2)

If we had differentiated ~bu[bx with respect to y, and dw/ty with

respect to x, we should have obtained two identical results, viz. :

This rule is general.

The higher partial derivatives are independent of the order of

differentiation. By differentiation of *&u[bx with respect to y,

assuming x to be constant, we get &("5~tyi which is written

-v-^r ; on the other hand, by the differentiation of <Ht/fy with

<)%
respect to aj, assuming i/ to be constant, we obtain ^~- That is

to say *

This was only proved in (3) for a special case. As soon as the

reader has got familiar with the idea of differentiation, he will no

doubt be able to deduce the general proof for himself, although it

is given in the regular text books. The result stated in (4) is of

great importance.

24. Exact Differentials.

To find the condition that u may be a function of x and y in

the equation du = Mdx + Ndy, .' ... (5)

where M and N are functions of x and y.

We have just seen that if u is a function of x and y
^)u ^u

ftt-gfc +
jpfe

... (6)

that is to say, by comparing (5) and (6)
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Differentiating the first with respect to y, and the second with

respeet to x, we have, from (4)

In the chapter on differential equations this condition is shown
to be necessary and sufficient in order that certain equations may
be solved, or "

integrated
"
as it is called. Equation (7) is therefore

called the criterion of integrability. An equation that satisfies

this condition is said to be a complete or an exact differential.

For examples, see page 290.

25. Integrating Factors.
The equation

Mdx + Ndy = . . . . (8)

can always be made exact by multiplying through with some function

of x, called an integratingfactor: (M andN are functions of x and y.)

Since M and N are functions of x and y, (8) may be written

2-5
'

">

or the variation of y with respect to x is as - M is to N; that is

to say, x is some function of y, say

f(x, y) = a,

then from (5), page 52,

By a transformation of (10), and a comparison of the result with (9),

we find that

dy__ D/(a?,y) / VO^SO _ _
M /i l\

dx~ SaT" / ~ly
~

N

Hence %^ . ,M ; and^ . ^, . . (12)

where /x is either a function of x and y, or else a constant. Multi-

plying the original equation by the integrating factor /x,
and

substituting the values of /x3/, ^N so obtained in (12), we obtain

^te +
5 % = 0,

^x ty
y

which fulfils the condition of exactness.

EXAMPLE. Show that the equation ydx -
.rdy = becomes exact when

multiplied by I/?/
2

.

dM = 1
.
3N = 1

-dij if
'

9*
"

if

Hence 'dM/'dy = 'dN/^x, the condition required by (7). In the same way show-

that l/xy and 1/x-- are also integrating factors.
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26. Illustrations from Thermodynamics.

It is proved in the theory of differential equations that the

number of integrating factors for any equation, Mdx + Ndy =
is infinite. Integrating factors are very much used in solving

certain forms of differential equations (q.v.), and in certain

important equations which arise in thermodynamics. Several

illustrations of partial derivatives will be found in subsequent

parts of this work.

The change of state of every homogeneous liquid, or gaseous
substance is completely denned by some law connecting the

pressure (p), volume (v) and temperature (0). This law, called the

characteristic equation, or the equation of state of the substance,

has the form

f(p, v, 0)
= 0.

Any change, therefore, is completely determined when any two of

these three variables are known. Thus, we may have

p = M<v, 0); v = f2(p, 0) ; or $ = f3(p, v). (1)

Confining our attention to the first, we obtain, by partial differen-

tiation,

.

a do '
r

where the partial derivative 'bpj'bv represents the coefficient of

elasticity of the gas, "top/M is nothing but the so-called coefficient

of increase of pressure with temperature at constant volume. If

the change takes place at constant pressure, dp = 0, and (2) may
be written

<h>\ /ty\ / /ty\

Wp
"

VWJ W*
The subscript is added to show which factor has been supposed
constant during the differentiation. Note the change of dv/dO to

dt?/<)0 at constant pressure. Equations (3) state that the coefficient

of thermal expansion is equal to the ratio of the coefficient of the

increase of pressure with temperature at constant volume, and the

coefficient of elasticity of the gas.

EXAMPLES. (1) Show that a pressure of 120 atmospheres is required to

keep unit volume of mercury at constant volume when heated 2 C. (Coefficient

of expansion of Hg = 0-00018, of compressibility 0-000003.) (Planck.)

(2) J. Thonisen's formula for the amount of heat Q disengaged when one

molecule of sulphuric acid (H^SO^ is mixed with n molecules of water (H^O) is

Q = 17860 n/(l-798 + n) cals.
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Put a = 17860 and b = 1-798, for the sake of brevity. If x of H9SO4 be mixed
with y of T2O, the quantity of heat disengaged by the mixture is x times as

great as when one molecule of H2SO4 unites with y/x molecules of water.

Substituting y/x = n in Thomsen's formula

Q = ayj(bx + y) cals.

If dx of acid is now mixed with x of HZSO4 and y ofH20, show that the amount
of heat liberated is

?)Q
' dx cals '

In the same way the amount of heat liberated when dy of water is added to a

similar mixture is

'd ab

The student of thermodynamics is not likely to meet with anything more
difficult than the seven following examples :

(3) Apply equation (3) to the ordinary gas equation

pv = Re, ...... (4)

where -B is a constant, p, v, and 6 have their usual meaning. Ansr.

What does this mean ?

(4) Verify the following deductions : Let Q, 6, p, v, represent any four

variable magnitudes whatever. By partial differentiation,

^Q, 'dQJ 30

Equate together the second and last members of (5), and substitute the value

of dp from (2), in the result. Thus,

Put dv = 0, and divide by de,

dQ

Again, by partial differentiation

Substitute this value of dd in the last two members of (5),

dQ

Put dp = 0, and write the result

By proceeding in this way, the reader can deduce a great number of

relations between Q, 6, p, v, quite apart from any physical meaning the letters

might possess.

If Q denotes the quantity of heat added to a substance during any small

changes of state, and p, v, 6, the pressure, volume and absolute temperature

of the substance, the above formulae are then identical with corresponding

formulae in thermodynamics. Here, however, the relations have been de-

duced without any reference to the theory of heat.
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Under these circumstances, (dQj'd6)jl9 represents the quantity of heat

required for a small rise of temperature at constant volume ; (dQI'd6)t is

nothing but the specific heat of the substance at constant volume, usually
written Cv ; similarly, (dQfd9)p is the specific lieat at constant pressure, written

Cp ; and (dQl^e and (dQfdp)9 refer to the two latent heats.

These results may be applied to any substance for which the relation (4)

holds good. In this case

(5) A little ingenuity, and the reader should be able to deduce the so-called

Beech's Theorem :

employed by Clement and Desormes for evaluating y. See any text-book on

physics for experimental detail.

(6) By the definition of adiabatic and isothermal elasticities (page 92),

E<t>
= -

v(dpl'dv)^ t
and E

ff
= -

v(dpfdv) 0t respectively.

The subscripts <f>
and indicating, in the former case, that there has been

neither gain nor loss of heat, in other words that Q has remained constant,

and in the latter case, that the temperature remained constant during the

process 'dp/'dv. Verify the following reasoning :

From the first and last members of (5), when Q is constant,

From (7), (10) and (3),

0* - C
Ee

~~ ~
\Vv

fdQ\ ffdQ\ Cp=
W)p/('de)v

=
-C,

= 7........ (12)

An important result.

(7) According to the second law of thermodynamics,
" the expression

is a perfect differential ". It is usually written d<j>, where
<f>

is called the

entropy of the substance. From the first two members of (5), therefore,

is a perfect differential. From (7), page 58, therefore,

dl VQ\ dC.

where C, has been written for (dQfdO),, L for (dQfdv)e.

According to the first laic of thermodynamics, when a quantity of heat dQ
is added to a substance, part of the heat energy d U is spent in the doing of

internal work among the molecules of the substance, and part is expended in

the mechanical work of expansion (p.dv) against atmospheric pressure (see

page 182). To put this symbolically,

dQ = dU + pdv ; or dU = dQ - pdv. . . . (15)

Now dU is a perfect differential. This means that however much energy

U, the substance absorbs, all will be given back again when the substance

returns to its original state. In other words, U is a function of the state of
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the substance (see page 295). This state is determined, (2) above, when any
two of the three variables p, v, 0, are known.

From the first two members of (5), and the last equation of (14), therefore,

dU = Cv .de + L.dv - pdv = Cv .dB + (L -
p)dr, . (16)

is a complete differential. In consequence, as before,

-(I?) ,17)
\o9/v

From (14) and (17),

1/3QN
-l^r) (18)
e\dv Je

a " law " which has formed the starting point of some of the finest deductions

in physical chemistry (see page 216).

(8) Establish Mayer's formula,

Cp - Cv = R, . . . . . (19)

for a perfect gas.

Hints: (i.) Since pv = RB, (dp^d&) v = R/v; .-. (dQfdO), = RB/v = p. (ii.)

Evaluate dv as in (2), and substitute the result in the second and third

members of (5). (iii.) Equate dv to zero. Find 'dvj'dd from the gas equation,

etc. Thus,

'VQ\ . fdQ\ fdo\ fdQ\ . fdQ\ /cX?\ R
= i^Q\ . etc

(9) Assuming Neiuton's formula that the square of the velocity of pro-

pagation (V) of a compression wave (e.g., of sound) in a gas varies directly as

the adiabatic elasticity of the gas (E$) and inversely as the density (p), or

V2 oc Efifp ;
show that V- oc yR8.

Hints : Since the compression wave travels so rapidly, the changes of

pressure and volume take place without gain or loss of heat. Therefore,

instead of using Boyle's law, pv constant, we must employ ^T = constant

(page 212). Hence deduce yp = v . dp/dv = E^. Note that the volume varies

inversely as the density of the gas. Hence, if

F2 oc Ej>lp oc E+v oc ypv oc yRB (20)

Equations (19) and (20) can be employed to determine the two specific heats

of any gas in which the velocity of sound is known. Let a be a constant to

be evaluated from the known values of R, 6, F-,

.-. Cv = R/(l
-

a], and C,,
= aCv .

Boynton has employed van der Waals' equation in place of Boyle's. Per-

haps the reader can do this for himself. It will simplify matters to neglect

terms containing magnitudes of a high order (see Boynton, Physical Review,

12, 353, 1901).

(10) If y = e-x + fit + y is to satisfy the equation

show that a2 = AfP + B&, where a, /8, 7, are constants.



CHAPTER II.

COORDINATE OR ANALYTICAL GEOMETRY.

" Order and regularity are more readily and clearly recognised when

exhibited to the eye in a picture than they are when presented

to the mind in any other manner." DR. WHEWELL.

27. Cartesian Coordinates.

THE physical properties of a substance may, in general, be con-

cisely represented by a geometrical figure. Such a figure furnishes

an elegant method for studying certain natural changes, because

the whole history of the process is thus brought vividly before

the mind. At the same time the numerical relations between

a series of tabulated numbers can be exhibited in the form of a

picture and their true meaning seen at a glance.

Let xOx and yOy' (Fig. 9) be two straight lines at right angles

to each other, and intersecting at the point 0, so as to divide the

plane of this paper into four quadrants I, II, III and IV. Let

P
l
be any

*
point in the first quadrant rjOx ;

draw P
l
M

l parallel

to On and P^ parallel to Ox. Then, if the lengths OMl
and P^

are known, the position of the point P with respect to these lines

follows directly from the properties of the rectangle NP^M-fl

(Euclid, i., 34). For example, if OM
1
denotes three units, Pl

M
l

four units, the position of the point P 1
is found by marking off

three units along Ox to the right and four units along Oy vertically

upwards. Then by drawing NPl parallel to Ox, and P^Ml parallel

to Oy, the position of the given point is at P
lt since,

P^ = ON = 4 units
;
NP

l
= OM^ = 3 units.

x'Ox, yOy' are called coordinate axes. If the angle yOx is a

ri^ht angle the axes are said to be rectangular. Conditions may
arise when it is more convenient to make yOx an oblique angle,

the axes are then said to be oblique. xOx' is called the abscissa

* It is perhaps needless to remark that what is true of any point /< /, <>/'//.
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or x-axis, yOy' the ordinate or y-axis. The point is called

the origin ;
OM

l
the abscissa of the point P, and P

l
M

l
the ordi-

nate of the same point. In referring the position of a point to a

pair of coordinate axes, the abscissa is always mentioned first, P1

is spoken of as the point whose coordinates are 3 and 4
;

it is

written "the point P(3, 4)".

In memory of its inventor, Bene Descartes, this system of

notation is sometimes styled the system of Cartesian coordinates.

The usual conventions of trignometry are made with respect

to the algebraic sign of a point in any of the four quadrants. Any

FIG. 9. Rectangular Cartesian Coordinates.

abscissa measured from the origin to the right is positive, to the

left, negative ; ordinates measured vertically upward are positive,

and in the opposite direction, negative. For example, if a and

b be any assigned number of units corresponding respectively to

the abscissa and ordinate of some given point, then the Car-

tesian coordinates of the point Pl
are represented as P^a, b), of

P
2
as P

2 (
-

a, b), of P
3
as P

3(
-

a,
-

b) and of P4 as P4(a,
-

b).

Points falling in quadrants other than the first are not often met

with in practical work.

Thus, any point in a plane represents two things, (1) its hori-

zontal distance along some standard line of reference (#-axis), and
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(2) its vertical distance along some other standard line of reference

(y-axis).

When the position of a point is determined by two variable mag-
nitudes (the coordinates), the point is said to be two dimensional.

We are always making use of coordinate geometry in a

rough way. Thus, a book in a library is located by its shelf and

number
;
the position of a town in a map is fixed by its latitude

and longitude ;
etc.

28. Graphical Representation.

Consider any straight or curved line OP situate, with refer-

ence to a pair of rectangular co-

ordinate axes, as shown in figure

10. Take any abscissae OMV
OM2,OMZ ,

. . . OM, and through
M M M draw the ordi-

M, M, Mj

nates P^, P
2
M

2 ,
. . . PM

parallel to the y-axis. The ordi-

nates all have a definite value

dependent on the slope of the

line* and on the value of the

abscissae. If x be any abscissa 0'

and y any ordinate, x and y are

connected by some definite law called the equation of the curve.

It is required to find the equation to the curve OP. In the

triangle 0PM
PM = OMt&nPOM,

or y ictana, ..... (1);

where a denotes the angle POM. But if OM = PM,

FIG. 10.

tan POM = - = tan 45.

The equation of the line OP is, therefore,

y-*; .... (2)
and the line is inclined at an angle of 45 to the rr-axis.

It follows directly that both the abscissa and ordinate of a point
situate at the origin are zero. A point on the #-axis has a zero

*
Any straight or curved line when referred to its coordinate axes, is called a

curve".

E
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ordinate
;
a point on the ?/-axis has a zero abscissa. Any line

parallel to the ic-axis has an equation

y = b; . . . (3)

any line parallel to the 7/-axis has an equation
*

x = a, .... (4)

where a and b denote the distances between the two lines and their

respective axes.

29. Practical Illustrations of Graphical Representation.

Suppose, in an investigation on the relation between the

pressure (p) and the weight (w) of a gas dissolved by unit

volume of a solution, we obtained the following successive pairs

of observations,

p = i, 2, 4, 8 . . .
= x.

. = i
1, 2, 4 . . . =y.

IBy setting off on millimetre, coordinate or squared paper

(Fig. 11) points P^i, l), P2(2, 1)

. . .
,
and drawing a line to pass

through all these points, we are

said to plot the curve. This

has been done in figure 11. The

only difference between the lines

OP of figures 10 and 11 is in their

2 f e tt slope towards the two axes.

From equation (1) we can put
FIG. 11. Solution of Gases in liquids.

w = p tan a, or tan a = \,

that is to say, an angle whose tangent is J. This can be found by
reference to a table of natural tangents. It is 26 33' (approxi-

mately).

Putting tan a = m, we may write

w = mp, .... (5)

where w is a constant depending on the nature of the gas and

liquid used in the experiment.

Equation (5) is the mathematical expression for the solubility

of a gas obeying Henry's law, viz. : "At constant temperature,
the weight of a gas dissolved by unit volume of a liquid is propor-
tional to the pressure". The curve OP is a graphical representation

of Henry's law.

To take one more illustration. The solubility of potassium
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chloride (A) in 100 parts of water at temperatures (0) between

and 100 is approximately as follows :

= 0, 20, 40, 60, 80, 100 = x,

A = 28-5, 39-7, 49-8, 59-2, 69-5, 79-5 =
y.

By plotting these numbers, as in the preceding example, we obtain

a curve PQ (Fig. 12) which, instead of passing through the origin

at 0, cuts the ?/-axis at the point Q such that

OQ = 28-5 units = b (say).

If OP' be drawn from the point parallel to PQ, then the equation
for this line is obviously, from (5),

A = w0,

but since the line under consideration cuts the i/-axis at Q,

A = mO + b, . . . . (6)

where b = OQ. In these equations, b, A and are known, the

value of m is therefore obtained by a simple transposition of (6),

m =
(A

-
b),'0.

Substituting the values of b and m in (6), we can find the ap-

proximate solubility of potassium chloride at any temperature (0)

between and 100 by the relation

A = 0-51280 + 28-5.

The curve QP in figure 12 is a graphical representation of the

variation in the solubility of

KCl in water at different

temperatures.

Knowing the equation to

the curve, or even the form

of the curve alone, the pro- ^
.bable solubility of KCl for

any unobserved temperature Q

can be deduced, for if the

solubility had been deter-

mined every 10 (say) instead

p

~20 fd 6ff ~80 TOO

OAo ,1
-,

FIG. 12. Solubility Curve for Klin water.
of every 20

,
the correspond-

ing ordinates could still be connected in an unbroken line. The

same relation holds however short the temperature interval. From
this point of view the solubility curve may be regarded as the path
of a point moving according to some fixed law. This law is defined

by the equation to the curve, since the coordinates of every point

on the curve satisfy the equation. The path described by such a

point is called the picture, locus or graph of the equation.
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EXAMPLES. (1) Let the reader procure some "
squared

"
paper and plot :

y = \x - 2
; 2y + 3x = 12 . . .

(2) The following experimental results have been obtained :

When x = 0, 1, 10, 20, 30, ...

y = -
3, 1-56, 11-40, 25-80, 40-20, . . .

(a) Plot the curve, (b) Show (i.) that the slope of the curve to the z-axis

is 1-44 = tan a = tan 60 (nearly), (ii.) that the equation to the curve is

y = l-44x - 3. (c) Measure off 5 and 15 units along the ic-axis, and show
that the distance of these points from the curve, measured vertically above

the a;-axis, represents the corresponding ordinates. (d) Compare the values

of y so obtained with those deduced by substituting x = 5 and x = 15 in the

above equation.

Note the laborious and roundabout nature of process (c) when contrasted

with (d). The graphic process, called graphic interpolation (q.v.), is seldom

resorted to when the equation connecting the two variables is available, but

of this anon.

(3) Get some solubility determinations from any chemical text-book and

plot the values of the composition of the solution (C, ordinate) at different

temperatures (6, abscissa), e.g., Loewel's numbers for sodium sulphate are

C = 5-0, 19-4, 55-0, 46-7, 44-4, 43-1, 42-2 ;

= 0, 20, 34, 50, 70, 90, 103-5.

What does the peculiar bend at 34 mean ?

In this and analogous cases, a question of this nature has to be decided :

WJiat is tlw best way to represent the composition of a solution ? Several

methods are available. The right choice depends entirely on the judgment,
or rather on the finesse, of the investigator. Most chemists (like Loewel

above) follow Gay Lussac, and represent the composition of the solution as

"parts of substance which would dissolve in 100 parts of the solvent".

Etard found it more convenient to express his results as "
parts of substance

dissolved in 100 parts of saturated solution ".

The right choice, at this day, seems to be to express the results in mole-

cular proportions. This allows the solubility constant to be easily compared
with the other physical constants. In this way, Gay Lussac's method be-

comes " the ratio of the number of molecules of dissolved substance to the

number, say 100, molecules of solvent"; Etard's "the ratio of the number

of molecules of dissolved substance to any number, say 100, molecules of

solution ".

30. General Equations of the Straight Line.

If equations (l)-and (6) be expressed in general terms, using

x and y for the variables, ra and b for the constants, we can

deduce the following properties for straight lines referred to a pair

of coordinate axes.

(1) A straight line passing through the origin of a pair of

rectangular coordinate axes, is represented by the equation

y = mx, . . . . (7)
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where m = tan a = y/x, a constant representing the slope of the

curve. The equation is obtained from (5) above.

(2) A straight line which cuts one of the rectangular coordinate

axes at a distance b from the origin, is represented by the equation

y = mx + b . . . . (8)

where m and b are any constants whatever. For every value of

m there is an angle such that tan a = m. The position of the

line is therefore determined by a point and a direction. Equation

(8) follows immediately from (6).

(3) A straight line is always represented by an equation of the

first degree,
Ax + By + C =

; . . . (9)

and conversely, any equation of the first degree between two variables

represents a straight line*

This conclusion is drawn from the fact that ' any equation

containing only the first powers of x and

y, represents a straight line. By sub-

stituting m = - AIB and b = - C/B in

(8), and reducing the equation to its

simplest form, we get the general equa-
tion of the first degree between two vari-

ables : Ax + By+C = Q. This represents
a straight line inclined to the positive

direction of the #-axis at an angle whose

tangent is - A/B, and cutting the ^/-axis

at a point
- C/B above the origin.

(4) A straight line which cuts each coordinate axis at the re-

spective distances a and b from the origin, is represented by the

equation

Consider the straight line AB (Fig. 13) which intercepts the

x- and i/-axes at the points A and B respectively. Let OA = a,

OB = b. From equation (9) if

y = 0, x = a; Aa + C =0,a = - C/A.

Similarly if x = 0, y = b ; Bb + C = 0, b = - C/B.

*
If the reader has not previously met with the idea conveyed by a "general

equation," he must pay careful attention to it now. By assigning suitable values to

the constants . I
, /;, (

\ he will be able to deduce every possible equation of the first

degree between the two variables x and /. See page 481.
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Substituting these values of a and b in (9), i.e., in

A B x y~
C^

~
C^

=
'

we et
~a
+

~b

=

There are several proofs of this useful equation. Formula (10) is

called the intercept form of the equation of the straight line, equa-

tions (7) and (8) the tangent forms.

Many equations can be readily transformed into the intercept

form and their geometrical interpretation seen at a glance. For

instance, the equation
x + y = 2 becomes \x + \y = 1,

which represents a straight line cutting each axis at a distance of

2 units from the origin.

One way of stating Gay Lussac's law is that " the pressure of

a given mass of gas at constant volume varies directly as the tem-

perature". If, under these conditions, the temperature be raised

0, the pressure increases the ^?0rd part of what it was at the

original temperature.* Let the original pressure, at C., be unity ;

the final pressure plt
then at 6

Pi = 1 + ****.

This equation resembles the intercept form of the equation of a

straight line (10) where a = 273 and b = I.

i* The intercepts a and b may be found by

putting x and y, or rather their equiva-

lents, 6 and p, successively equal to zero.

If e = 0, p = I
;

if p = 0, = - 273, the

well-known absolute zero.

/ a
1

If possible let fall below - 273, then

FIG. 14 we have a negative value of p in the above
(b much exaggerated).

equation> which is physically impossible.

The physical signification of this is that temperatures below - 273

are impossible, if the gas obeys Gay Lussac's law at temperatures

approaching the absolute zero.

*
Many students, and even some of the textbooks, appear to have hazy notions oil

this question. According to Gay Lussac's law, the increase in the volume of a gas at

any temperature for a rise of temperature of 1, is a constant fraction of its initial

volume at QC. ;
Dalton's law, on the other hand, supposes the increase in the volume

of a gas at any temperature for a rise of 1, is a constant fraction of its volume at ttiat

temperature (the
"
Compound Interest Law," in fact). The former appears to approxi-

mate closer to the truth than the latter. Gay Lussac says that he got the idea from

Charles, hence this property of gases is sometimes called Claries' law, or the law of

Charles and Gay Lussac.
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EXAMPLES. (1) To find the angle between the point of intersection of two

straight lines whose equations are given. Let the equations be

y = mx + b ; y' = m'x' + b'.

Let
<f>

be the angle required (see Fig. 15), m = tan a, m' = tan a'. From Kuclid,

i., 32, a' - a =
</>,

.'. tan (a'
-

a)
= tan 0. By formula, page 500,

tan a' - tan a m' - m
tano=, . .._

tana'
=

l + mm' ' ' ' (
U

>

FIG. 15.

N

FIG. 16.

(2) To find tlie distance between two points in terms of their coordinates.

In Fig. 16, let P(xlyl)
and Q(x<fl^ e the given points. Draw QM1

parallel to

NM. OM =
a-!,
PM =

Vl ; ON** z2 , QN =
?/2 ;

WP = MP - MM* = MP - NQ = y,
-

y2 ;

QM1 = MN = OM - ON - x
l
- .r2 .

Since QPM 1
is a right-angled triangle

(12)

31. Differential Coefficient of a Point moving on a Straight
Line.

If the amount of gas (v-^ consumed in a burner is proportional
to the time (^), equal amounts of gas are consumed in equal times,

Suppose that the amount of gas burnt in one second be denoted

by V, then for time t
Q ,

v
l
has a value V

Q ,
and the gas consumed

in
j
- t

Q
seconds amounts to V(t l

- Hence

whatever be the values of v and t. This equation can be written

(i -
*o)

= V(^ ~
>

which resembles the equation to a straight line (7), when the

ratio of the increments of x and y possesses a constant value.

Expressing the last equation in general symbols, we can put

_
y y increment y

= constant,
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or, at the limit, the velocity of gas consumption may be represented

by

F-
3? -tan; . . . (13)

that is to say, by a straight line with a slope, or inclination to the

a;-axis equal to tan a.

EXAMPLE. Malard and Le Chatelier represent the relation between the

molecular specific heat (s) of carbon dioxide and temperature (6) by the ex-

pression
s = 6-3 + 0-005640 - 0-000001,080

2
.

Plot the 6,ds/de-cur\e from 6 = to 6 = 2,000 (abscissae). Possibly a few

trials will have to be made before the "scale" of each coordinate will be

properly proportioned to give the most satisfactory graph. The student must

learn to do this sort of thing for himself. What is the difference in meaning
between this curve and the s,6

- curve ?

32. Straight Lines Satisfying Conditions.

The reader should work through the following examples so as

to familiarise himself with the conceptions of coordinate geometry.

Many of the properties here developed for the straight line can

easily be extended to curved lines.

(1) The condition that a straight line may pass through a given

point. This evidently requires that the coordinates of the point

should satisfy the equation of the line. Let the equation be in the

tangent form

y = mx + b.

If the line is to pass through the point (x lt y-^,

y l
= mx

l
+ b,

and by subtraction (y
-

y^}
= m(x - x) . . . (14)

which is an equation of a straight line satisfying the required

conditions.

(2) The condition that a straight line may pass through two

given points. Continuing the preceding discussion, if the line is

to pass through (x2 , y2),
substitute x

2 , y2 ,
in

' m =
(2/2

-

Substituting this value of m in (14), we get the equation,

2/2 -2/i x-
2
-

i

for a straight line passing through two given points (xv yj and

fe> 2/2)-
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tfp
(3) To find the coordinates of the point of intersection of two~ >wfe',

given straight lines. Let the given equations be

y = mx + b and y = m'x + b'.

Now each equation is satisfied by an infinite number of pairs of

values of x and y. These pairs of values are generally different

in the two equations, but there can be one, and only one pair of

values of x and y that satisfy the two equations, that is, the

coordinates of the point of intersection. The coordinates at this

point must satisfy the two equations, and this is true of no other

point.

The roots of these two equations, obtained by a simple algebraic

operation, are the coordinates of the point required. The point
whose coordinates are (b'

-
b)((m

-
m'), (b'm

-
bm')((m -

m')
satisfies the two equations.

(4). To find the condition that three given lines may meet at a

point. The roots of the equations of two of the lines are the co-

ordinates of their point of intersection, and in order that this point

may be on a third line the roots of the equations of two of the

lines must satisfy the equation of the third.

EXAMPLE. If three lines are represented by the equations 5.r + 3y = 7,

3x - y - 10, and x + 2y = 0, show that they will all intersect at a point
whose coordinates are x = 2 and y = - 1. Solving the last two equations,
we get x = 2 and y = -

1, but these values of x and y satisfy the first equation,
hence these three lines meet at the point (2,

-
1).

(5) To find the condition that two lines may be parallel to one

another. Since the lines are to be parallel they must make equal

angles with the ic-axis,

.*. angle a' = angle a, or tana' = tana,
or m = m, (16)
that is to say, the coefficient of x in the two equations must be

equal.

(6) To find the condition that two lines may be perpendicular to

one another. If the angle between the lines is

< = 90 [see (11)] a - a = 90,

,/. tana' = tan(90
-

a)
= - cot a = - I/tan a,

. - . (17)

or, the slope of the one line to the #-axis must be equal and

opposite in sign to the reciprocal of the slope of the other.
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33. Changing the Coordinate Axes.

In plotting the graph of any function, the axes of reference

should be so chosen that the resulting curve is represented in the

most convenient position. It is frequently necessary to pass from

one system of coordinate axes to another. In order to do this

the equation of the given line referred to the new axes must be

deduced from the corresponding equation referred to the old set

of axes.

(1) To transform from any system of coordinate axes to another

set parallel to the former but having a different origin. Let Ox,

Oy (Fig. 17) be original axes, and KO^x^ HO^^ the new axes

parallel to Ox and Oy. Let MM,P be the ordinate of any point P
parallel to the axes Oy and 0^yr Let h, k be the ordinates of the

y
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the old z-axis, and P3f
t perpendicular to the new axes, so that

the angle MPMl
= ROM

l
= a,

OM = x, OMl
= x

lt
PM =

y, PMl
= yr

Draw M
V
R perpendicular and QMl parallel to the .r-axis. Then

x = OM = OR - MR = OR - QMV
= OM

l
cos a - M^ sin a ;

.-. x = a^cosa
- yl

sina .... (20)

Similarly y = MP = MQ + QP = BM
1
+ QP,

= OM
l
sin a + MjP cos a,

.-. y = x
l
sina + yl

cosa .... (21)

Equations (20) and (21) enable us to refer the coordinates of a

point P from one set of axes to another. Solving equations (20)

and (21) simultaneously,

(22)
x

l
= x cos a + y sin al

yl
= y COS a - X sin a

J

(3) To transform from one set of axes to another set having a

different origin and different directions. Obviously this can be done

by making the two preceding transformations one after another.

34. The Circle and its Equation.

To find the equation of a circle referred to its centre as origin*

Let r be radius of the circle (Fig. 19) whose centre is the origin of

the rectangular coordinate axes

xOx' and yOy'. Take any point

P(x y y) on the circle. Let PM
be the ordinate of P. From the

definition of a circle OP is con-

stant and equal to r. Then by

Euclid, i., 47.

(OM)
2 + (MP)2 = (OP)'

2
,

or x2 + y
2 = f2

,
. (1)

which is the equation required.

In connection with this equa-
tion it must be remembered that

the abscissae and ordi nates of

some points have negative

values, but, since the square of a negative quantity is always

positive, the rule still holds good. Equation (1) therefore expresses

the geometrical fact that all points on the circumference are at an

equal distance from the centre.
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EXAMPLES. (1) Required the locus of a point moving in a path according
to the equations y = a cos t, x = a sin t, where t denotes any given interval of

time. Square each equation and add,

y
2 + x2 = a2

(cos
2
t + sin2

^).

The expression in brackets is unity (formula (17) page 499), and hence for all

values of t

y
2 + x* = a2

,

i.e., the point moves on the perimeter of a circle of radius a.

(2) To find the equation of a circle, whose centre, referred to a pair of

rectangular axes, has the coordinates h and k. From (19), previous paragraph,

(x
-

h)
2 + (y

-
k)

2 = r2
,

. . . . (2)

where P(x, y) is any point on the circumference. Note the product xy is

absent. The coefficients of x2 and y
2 are equal in magnitude and sign.

These conditions are fulfilled by every equation to a circle. Such is

3x2 + 3y2 + Ix - 12 = 0.

The general equation of a circle is

x2 + y
2 + ax + by + c = 0*. (3)

35. The Parabola and its Equation.

There is a set of important curves whose shape can be obtained

by cutting a cone at different angles.

Hence the name conic sections. They
include the parabola, hyperbola and

ellipse, of which the circle is a special

case. I shall very briefly describe

their chief properties.

A parabola is a curve such that

any point on the curve is equi-distant

from a given point and a given straight

line.

The given point is called the

focus, the straight line the directrix,

the distance of any point on the

curve from the focus is called the
FIG. 20. The Parabola.

jocal radim . Q, Fig. 20, is called

vertex of the parabola. AK is the directrix ; OF, PF, P^ . . .

are focal radii
;

K
Z
P

S
= PZF, K2

P
2
= P

2F, KP = PF, AO = OF.

The reader should verify all these equations by plotting on his
"
squared

"
paper.
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(1) To find the equation of tfie parabola. Take vertex as origin of the

coordinate axes. Let OA = OF = a. Take any point P(x t y)

FP = PK = AM = AO + OM= x + a
;

FM = OM - OF = x - a
;

PM=y.
In right-angled triangle FPM

(x
-

a)
2 + 7/ = (x + a)

2
;

.-. y
2 = lax, (1)

which is the standard equation of the parabola. The abscissae are proportional
to the squares of the ordinates.

(2) To find the shape of the parabola. From (1)

y = -4-2 *Jax.

1st. Every positive value of x gives two equal and oppo-
site values of y, that is to say, there are two points at equal
distances perpendicular to the #-axis. This being true for all

values of x, the part of the curve lying on one side of the ic-axis

is the mirror image of that on the opposite side *
;
in this case the

a;-axis is said to be symmetrical with respect to the parabola.
Hence any line perpendicular to the #-axis cuts the curve at two

points equidistant from the ic-axis.

2nd. When x = 0, the ?/-axis is tangent )
to the curve.

3rd. a being positive when x is negative, there is no real value

of y, for no real number is known whose square is negative ;
in

consequence, the parabola lies wholly on the right side of the 2/-axis.

4th. As x increases without limit, y approaches infinity, that is

to say, the parabola recedes indefinitely from the x or symmetrical-
axis on both sides.

EXAMPLES. (1) By a transformation of coordinates show that the para-
bola represented by equation (1), may be written in the form

x = a + by + cy
z

,
. . . . . (2)

where a, b, c are constants. Let x become x + h; y = y + k\ a = j where fe, k

and ./ are constants. Substitute the new values of x in (1) and multiply out.

Collect the constants together and equate to a, b and c as the case might be.

(2) In the general equation of the second degree
ax* + bxy + cy

z + fx + gy + h = 0, . . . (3)

if 62 - 4oc = 0, the equation represents a parabola, one or two straight lines

or an impossible curve. Trace the curve x2 - <xy + y
z - 8x + 16 = and

show that the curve is a parabola, 6 = 2, a = 1, c = 1. What relations must
exist between the coefficients in order that (3) may represent a circle ?

* The student of stereo-chemistry would say the two sides were "
enautiomorphic ".

fA "tangent" is a straight line which touches but does not cut the curve (see

pages 82 and 494).
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36. The Ellipse and its Equation.

An ellipse is a curve such that the sum of the distances of any

point on the curve from two given points is always the same.

In Fig. 21 let P be the given point which moves on the curve

PP' so that its distance from the two fixed points Flt
F

2 , called the

foci, has a constant value say 2a. The distance of P from either

focus is called the focal radius (or radius vector).

FIG. 21. The Ellipse.

(1) To fitid the equation of the ellipse. This is rather a tedious deduction.

If desired, the final equation may be taken without proof. In the same figure,

let xOx' and yOy' be a pair of coordinate axes such that the centre bisects

the line F2Fl
on the x-axis. Take any point P(x, y) on the ellipse. Complete

Fig. 21. Let OFZ
= OF^ = c so that a > c, otherwise F2 and F1

fall outside

the ellipse. Let F^P = r2 , F^P = rr In the right-angled triangles PF2lfand

= (PIf)
2 + (F2M)

2
,
and

or r2
2 =

3/2 + (x
_

c)2) and ri

Add and also subtract equations (1), when

ix
;
or (r, -f /

-

2) (i\
- r2) = 4cx.

By definition of the ellipse r, + r2
= 2<x and substituting this value of

in (3), we get

r
l
- rz = 2cx/a

Adding and subtracting r
l + r2 = 2a from this equation we obtain

T-J
= a + cx\a ;

r2 = cx/a -a
Squaring equations (5), and substituting in (2), we get

a4 + c2ar2 = a2
(7/

2 + x2 + c2
) ;

or x2
(a

2 - c2
) + a2

^
2 = 2

(a
2 - c2

)
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in the right-angled triangles Pl
OF

l
and P^OF^ 62 + ca = 2

,
nr <-

Substituting 62 for a2 - c2
,
in (6), and dividing by a2

6'
2

,
we get

x2
?/
2

rf+F- 1
'
..... (7)

which is the required equation of the ellipse.

Obviously, if a = b, this equation passes into that of a circle (page 75).

The circle is thus a special case of the ellipse.

The line P
2
P

4 ,
in Fig. 21, is called the major axis, P^P* the

minor axis, their respective lengths being 2a and 2ft
;
the magni-

tudes a and b are the semi-axes ; each of the points Pl? P.,, PA , P4 ,

is a verft'.i .

(2) To
%
/md the shape of the ellipse. From equation (7) it

follows that

y = b x/1 - 2?
2
/a

2
,
and # = a v/l - y

2
/6*. . (8)

1st. Since y
2 must be positive, #2

/a
2 > 1, that is to say, x

cannot be numerically greater than a. Similarly it can be shown

that ?/ cannot be numerically greater than b.

2nd. Every positive value of x gives two equal and opposite

values of y, that is to say, there are two points at equal distances

perpendicularly above and below the iP-axis. The ellipse is there-

fore symmetrical with respect to the #-axis. In the same way, it

can be shown that the ellipse is symmetrical with respect to the

t/-axis.

3rd. If the value of x increases from zero until x = + a, then

y = 0, and these two values of x furnish two points on the <r-axis.

If x now increases until x > a, there is no real corresponding
value of y

2
. Hence the ellipse lies in a strip bounded by the

limits x = a ; similarly it can be shown that the ellipse is

bounded by the limits y = b.

The ellipse is not a very important curve. Its chief application

will be discussed later on.

EXAMPLES. (1) Let the point P(x, y) move on a curve so that the position

of the point, at any moment, is given by the equations, .r = a cos / and

y = b sin t ; required the path described by the moving point.

Square and add, since cos2^ -i- sin2^ is unity (page 499),

The point therefore moves on an ellipse.

(2) The general equation of the second degree,

rt.,-2 + I).,.,/ + cy'2 + fx + gy + /, = Q,

represents an ellipse when 62 - 4ac is negative, or else it represents a circle,

point, or an imaginary curve. For instance, a>2 -
2a-y + '2y-

- .r --
// -r ^ =

Here 62 - ac = - 4. Plot the curve to this equation.
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(3) Find the relation between the constants a, b, in, c in the equations
xz

/a
z + 7/

2
/6

2 = 1 and y = mx + c, in order that the line may cut the ellipse in

two, one, or no point. For the first a2w2 + b2 - c- must be greater than zero,

for the second, equal to zero, for the third, less than zero.

37. The Hyperbola and its Equation.

The hyperbola is a curve such that the difference of the distance

of any point on the curve from two fixed points is always the same.

Let the point P(x, y) (Fig. 22) move so that the difference of

its distances from two fixed points F, F' (called the foci) is equal
to 2a. Then PF' - PF = 2a.

(1) To find the equation of the hyperbola. Let xOx', yOy' be rectangular

axes intersecting at a point midway between F' and F so that OF = OF' = c r

and let FP =
r, F'P = r'. In the right-angled triangles FPM and F'PM,

(FP)* = (PM)* + (MF)
Z

,
and (F'P)* = (PM)* + (F^M)* ;

or r2 = 7/
2 + (x

-
c)

2
,
and r'*= y*+(x + c)'

2
. ...(!>

FIG. 22. The Hyperbola.

Adding and subtracting equations (1) we get

r2 + r'2 = 2(7/
2 + x2 + c2

) (2)

r'2 _ r2 = CXj or
(
r ' _ r

) (
r + r

')
= cx . ... (3)

By definition of the hyperbola, r' - r - 2a. Substituting this result in (3) we

get
r + r' = Zcxja (4)

By addition and subtraction of r' - r - 2a, from (4),

r' = a + cx/a ;
r = - a + cxja. ... (5)

Squaring equations (5), and substituting in (2), we get
4 + C2a.2 = a2^2 + X2 + C

2)
.

or x2
(a

z - c2
) + aV = 2

(a
2 - c2

).
. . . (6)

By Euclid, i., 20 (Cor.), the difference between any two sides of a triangle is

smaller than the third side, and therefore

2a < 2c, or a < c.
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Let * c~ = a2 + ft
2

,
or a* - c2 = - 612

.

Substituting this value of 62 in (6) and dividing out, we obtain the equation

to the hyperbola in the simple form

x2
if-

a-*- 1...... m
The xOx'-&xis is called the transverse or real axes of the hyper-

bola
; yOy' the conjugate or imaginary axes ; the points A, A' are

the vertices of the hyperbolas, a is the real semi-axis, b the

imaginary semi-axis.

(2) To find the shape of the hyperbola. From (7)

+ b2 . (8)

_~ v x2 - a2
,
and x =

1st. Since y
1 must be positive, x2

<4 a2
,
or x cannot be nu-

merically less than a. No limit with respect to y can be inferred

from equation (8).

2nd. For every positive value of x, there are two values of y

differing only in sign. Hence these two points are perpendicular

above and below the #-axis, that is to say, the hyperbola is sym-
metrical with respect to the #-axis. There are also two equal and

opposite values of x for all values of y. The hyperbola is thus

symmetrical with respect to the ?/-axis.

3rd. If the value of x changes from zero until x =* + a, then

y = 0, and these two values of x furnish two points on the re-axis.

If x > a, there are two equal and opposite values of y. Similarly

for every value of y there are two equal and opposite values of x.

The curve is thus symmetrical with respect to both axes, and lies,

beyond the limits x = a.

EXAMPLES. (1) In the general equation of the second degree,

ax2 + bxy + cy
z + fx + gy + h = 0,

if 62 - 4ac is positive, the equation either represents an hyperbola or two

intersecting straight lines. E.g., x- - 6xy + y
2 + 2x + 2y + 2 = 0. Plot

this curve.

(2) The equation to the hyperbola whose origin is at its vertex is

.

Substitute x + a for x in the regular equation. Note that y does not change.

Before describing the properties- of this interesting curve I

shall discuss some fundamental properties of curves in general.

* With A or A' as centre, and radius equal to OF = c, describe a circle cutting
the y-axis at the points B, B'. Complete Fig. 22. Hence c2 = a2 + 62. Note. For

greater clearness in the drawing, F and F1 have been removed a little further from
the curve than their real position.

F
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38. A Study of Curves.

(1) The tangent to a curve (footnote, page 77). Let OPQ be a

curve situated, with respect to

a pair of coordinate axes, as

shown in Fig. 23. Let P and

Q be two points on the curve,

PM and QN their perpendicu-
lars on Ox. Let PR be drawn

parallel to MN. Join PQ and

produce QP to cut Ox pro-

duced at T. If Q is supposed
to travel along the curve until

it approaches infinitely near to

the point P, the chord PQ be-
FlG * 23>

comes, at the limit, the tangent
to the given curve at P. Hence the limit of the ratio RQ/PR is

a tangent to the given curve. Or

= Lt tan RPQ = Lt tan NTP . (1)

Take any point P(x, y) on the curve POP' represented by the

equation

*/=/(*) . (2)

Let the coordinates of P be increased by any arbitrary increments

Bx and By, so that the particle occupies a new position,

Q(x + Bx, y + By).

OM = x ;
PR = MN = to

;
ON - x + Bx

MP = y ; QR = By ; QN = QR + RN = QR + PM = y + By.

Since the point Q also lies on the curve,

y + By = f(x + Bx) (3)

and EQ = By = f(x + Bx)
-

f(x).

RQ _ f(x + Bx)
-

f(x) _ filler, y)
' ' PR ~ &x = Bx (incr. x)'

or di//dic = tan a .... (4)

This is a most important result. In words, the tangent of the

angle made by the slope of any part of the curve towards the x-axis

is the first differential coefficient of the ordinate of the curve with

respect to the abscissa. This rule applies to any curve.
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EXAMPLES. (1) Find the tangent of the angle (a) made by any point

P(x, y) on the parabolic curve. In other words, it is required to find a

straight line which has the same slope as the curve has which passes

through the point P(x, y). Since

t/
2 = 4ax

; dyjdx
-

lafy = tan a.

If the tangent of the angle were to have any particular value, this value would

have to be substituted in place of dy/dx. For instance, let the tangent to the

point P(x, y) make an angle of 45. Since tan 45 = unity,

2afy = tan a = 1, .'. y = 2a.

Substituting in the original equation y
2 = lax, we get

x = a,

that is to say, the required tangent passes through the extremity of the

ordinate perpendicular on the focus. If the tangent had to be parallel to the

.r-axis, tan being zero, dy/dx is equated to zero ; while if the tangent had to

be perpendicular to the .r-axis, since tan 90 = oo, dyjdx oo.

(2) Required the direction of motion at any moment of a point moving

according to the equation, y = a cos 2*Y ^ + e V The tangent at any time t

2ira .
/ t \

has the slope,
--

-y-
sin 2*-l ^ + 6

)

(2) Equation of the tangent line. Let TP (Fig. 24) be a tan-

gent to the curve at the point P(x^ y^. Let OM = xv PM = yr
Let y = mx, be the equation of the tangent line, and yl

=
/(#i)

the equation of the curve. The condition that a straight line may
pass through the point P(xv yj, is (equation (14), page 72) that

y -
2/1
= m(%

-
#1) (5)

where ra is the tangent of the angle which the line y mx makes

with the z-axis. But we have just seen that this angle is equal
to the first differential coefficient of the ordinate of the curve ;

hence by substitution

j,
-

y,
-
gl(*

-
*,), ... (6)

which is the required equation of the tangent to a curve at a

point whose coordinates are xv yr

EXAMPLE. Required the equation of the tangent to a parabola. Since

yi* = 40^, dyl/dxl
= 2ajyr

Substituting in (5) and rearranging terms,

yy\
-

y\ = 2 (#
-

-^i)-

Substituting for
y/j

2
,
we get

yy^ = 2a(x + xj
as the equation for the tangent line of a parabola. If x 0, tan = 00, and
the tangent is perpendicular to the x-axis and touches the ?/-axis. To get the

point of intersection of the tangent with the x-axis put y = 0, then x = - xr
The vertex of the parabola therefore bisects the .r-axis between the point of

intersection of the tangent and of the ordinate of the point of tangency.
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(3) Equation of the normal line. A normal line is a perpen-
dicular to the tangent at a given

point on the curve, drawn to the

Let NP be normal to the curve

(Fig. 24) at the point P(xlt yj.
Let y = mx, be the equation to

the normal line, yl
=

/(a^), the

equation to the curve. The con-

dition that any line may be per-

pendicular to the tangent line TP,
is that m' = - l/m (equation (17), page 73). From (5)

1,

FIG. 24.

y -

or

m
dXl

(7)

(4) Equation of the subnormal. The subnormal of any curve

is that part of the #-axis lying between the point of intersection of

the normal and the ordinate drawn from the same point on the

curve.

Let MN be the subnormal of the curve shown in figure 24, then

MN = x - xr
The corresponding value for the length of the subnormal is, from (7),

the normal being drawn from the point P(xlt y^.

(5) Equation of the subtangent. The subtangent of any curve

is that part of the #-axis lying between the points of intersection

of the tangent and the ordinate drawn from the given point.

Let MT (Fig. 24) be the subtangent, then

x
l
- x = MT.

Putting y = in equation (6), the corresponding value for the

length of the subtangent is

MT = x
l
- x =

y^dx^dy-^. ... (9)

(6) The length of the tangent and of the normal. The length

of the tangent can be readily found by substituting the values

PM and TM in the equation for the hypotenuse of a right-angled
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triangle TPM (Euclid, i., 47) ;
and in the same way the length of

the normal is obtained from the known values of MN and PM
already deduced.

EXAMPLES. (1) Find the length of the subtangent and subnormal lines

in the parabola, y
2 = ax. Since

the subtangent is 2x, the subnormal 2a.

(2) Show that the subtangent of the curve pv = constant, is equal to -
p.

39. The Parabola (resumed).

Returning now to the special curves, let P(x, y) be a point on the para-
bolic curve (Fig. 25) referred to the coordinate axes Ox, Oy ;

PT a tangent at

the point P. Let F be the focus of the parabola y"-
= 4ar. Join PP. Draw

KP parallel to Ox. Join KT. Then KPFT is a rhombus (Euclid, i., 34),

for it has been shown that the vertex of the parabola A bisects the subtangent

(Example (1) above). Hence,
TA = AM, and, by definition, OA = AF,

.-.TO = FM, and KP = TF,
.'. the sides KT and PF are parallel, and by definition of the parabola,
KP = PF; .-.the two triangles KPT and PTF are equal in all respects, and

(Euclid, i., 5) the angle KPT = angle

TPF, that is to say, the tangent to tJie

parabola at any given point bisects the

angle made by the focal radius and

the perpendicular dropped on to the

directrix from the given point.

In Fig. 25, the angle TPF =

angle TPK = opposite angle RPT'

(Euclid, i., 15). But, by construc-

tion, the angles TPN and NPT' are

right angles ;
take away the equal

angles TPF and RPT' and the angle
FPNis equal to the angle NPR, that

is to say, the normal at any point on

FIG. 25. The Focus of the Parabola

(after Nernst and Schonflies).

the parabola, bisects the angle enclosed by tlie focal radius and a line draicn

through the given point, parallel to tlie x-axis.

This property is of great importance in physics. All light rays falling

parallel to the principal (or x-) axis on to a parabolic mirror are reflected at

the focus F, and conversely all light rays proceeding from the focus are re-

flected parallel to the x-axis. Hence the employment of parabolic mirrors

for illumination and other purposes. In some of Marconi's recent experi-

ments on wireless telegraphy, electrical radiations were directed by means of

parabolic reflectors. Hertz, in his classical researches on the identity of light

and electro-magnetic waves, employed large parabolic mirrors, in the focus of

which a "
generator," or " receiver

"
of the electrical oscillations was placed.

See the translation of Hertz's Electric Waves, by Jones (1893), page 172.
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SO. The Ellipse (resumed).

The deduction of an equation for tJie tangent at any point on the ellipse is

a simple exercise on equation (6), page 83,

Differentiating the equation of the ellipse, x-fja
2 + y^/b

2 = 1, we obtain

*. = _ ? a .
(2)dx

t a2
y-i

substituting this value of dy^dx-^ in (1)

Wp.
y-y, =-^-^

Multiply by yl
and divide through by ft

2
, rearrange terms and combine the

result with the equation to the ellipse. The result is the tangent to any point
on the ellipse,

xx-. yui

Ir + TF^' <
3

>

where x^ y^ are coordinates of any point on the curve and x, y the coordi-

nates of the tangent.
Now the tangent cuts the #-axis at a point where y = 0. Hence

xx^ = a2
, or, x = a2

/xl (4)

In Fig. 26 let PT be a tangent to the ellipse, PN the normal. From (4)

= x + c = az
lx-, + c, FT = x - c = a2lxl

-
c,

and fT

From equations (5), page 78,
PF

l-

a - cx1

a? +
(6)

From (5) and (6), therefore,

F^T-.FT ^F^P-.

FIG. 26. The Foci of the Ellipse (after Nernst and Schonflies).

By Euclid, vi., A: "If, in any triangle, the segments of the base produced
have to one another the same ratio as the remaining sides of the triangle,

the straight line drawn from the vertex to the point of section bisects the

external angle ". Hence in the triangle FPF^ the tangent bisects the ex-
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ternal angle FPR, and the normal bisects the angle FPP\. That is to say,
the noniml tit tin if point oil the ellipse bisects ttie angle enclosed by tlie focal

radii ; and the tangent at any point on the ellipse bisects the exterior angle

formed by the focal radii.

This property accounts for the fact that if F^P be a ray of light emitted

by some source Flt
the tangent at P represents the reflecting surface at that

point, and the normal to the tangent is therefore normal to the surface of

incidence. From a well-known optical law,
" the angles of incidence and re-

flection are equal," and since F^PN is equal to NPF when PF is the reflected

ray, all rays emitted from one focus of the ellipse are reflected and concen-

trated at the other focus. This well-known physical phenomena applies to

light, heat, sound and electro-magnetic waves.

The questions raised in 39 and 40 are treated in any textbook on

physical or geometrical optics.

41. The Hyperbola (resumed).

(1) The equation of the tangent at any point P(xlt y^ on the hyperbolic

curve, is obtained, as before, by substituting the first differential coefficient

of the tangent to the curve in the equation

By differentiation of the equation z2
/a

2 -
?/
2
/&

2 = 1, we get,

Multiply this equation by y, divide by 62
, rearrange the terms and combine

the result with (2).> We thus find that the tangent to any point on the

hyperbola has the equation

**i yy\ ,

-&
'

-&
= 1 ..... &

At the point of intersection of the tangent with the .r-axis, y = and the

corresponding value of x is

= a/*1 , ...... (4)

the same as for the ellipse.

The limiting position of the tangent to the point on the hyperbola at an

infinite distance away is interesting. Such a tangent is called an asymptote.
From (4) if x^ is infinitely great, x 0, and the tangent then passes

through the origin.

(2) To find the, angle which the asymptote makes with the x-axis we must
determine the relative value of

Multiply both sides by 62/x
2

,
and
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If x be made infinitely great the desired ratio is

rt y* &2
. rJ-llX = 00 -^ 2=

,
. . J-J

x2 a2

Substituting this in equation (2) above we get, by writing x for x
lt y for ylt

dy a b* b

dx
= tana (say) = 5.

-
2
=
^

. . . . (5)

If we now construct the rectangle BSS'R' (Fig. 22, page 80) with sides

parallel to the axis and cut off OA = OA' = a, OB = OB' -
b, the diagonal

in the first quadrant and the asymptote, having the same relation to the two

axes, are identical. Since the x- and ?/-axes are symmetrical, it follows that

these conditions hold for every quadrant. See page 137 for a further dis-

cussion on the properties of asymptotes.

42. The Rectangular or Equilateral Hyperbola.

If we put a = b in the standard equation to the hyperbola, the

result is a special case of the hyperbola for which

x* -
f- = a*, . . . . (6)

and from equation (2), page 496,

tan a = 1 = tan 45,
that is to say, each asymptote makes an angle of 45 with the x-,

or i/-axes. In other words, the asymptotes bisect the coordinate

axes. This special form of the

hyperbola is called an equilat-

eral or rectangular hyperbola.

It follows directly that the

asymptotes are at right angles
to each other. The asymptotes

may, therefore, serve as a pair

of rectangular coordinate axes.

This is a very important prop-

erty of the rectangular hyper-
bola.

PIG. 27.-The Rectangular Hyperbola.
To find the Aquation of a

rectangular hyperbola referred

to its asymptotes as coordinate axes. This problem is most simply
treated as one of transformation of coordinates from one system

(page 74) to another inclined at an angle of 45 to the old set, but

having the same origin.

On page 75 it was shown that if the coordinates of a point

P(x, y) referred to one set of axes, become x and yl
when referred

to a new set, the equations of transformation are

x x
l
cos a - yl

sin a
; y x

l
sin a + yl

cos a . (7)
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As shown in Fig. 27, the old axes yOx have to be rotated through
an angle of - 45.*

But sin
(
- 45) = - 1 / ^2 ;

cos
(
- 45) = 1/^2 (page 497).

Hence from (7) above

x-xJJZ + yJJZ; y = - xj J2 + y, /^ . (8)

By addition and subtraction

x - y = 2^ / ^2 ; x + y = 2^ / ^2 . . (9)

If P(x, y) be any point on the rectangular hyperbola
x2 - y

2 = a2
,
or (x

-
y) (x + y)

= a2
.

Substituting these values of (x
-

y) and (x + y) in (9), we get

or, writing the constant term a2
/2 = *, x for x

19 y for ylt

xy = constant = K . . . (10)

What is true of any point on the hyperbola is true for all points,

that is to say, equation (10) is the equation for a rectangular

hyperbola referred to its asymptotes as coordinate axes.

From (10) y = K/X, and it follows that as y becomes smaller, x

increases in magnitude. When y = 0, x =
oo, that is to say, the

,z-axis touches the hyperbola an infinite distance away. The
same thing may be said of the ^-axis.

43. Illustrations of Hyperbolic Curves.

(1) The graphical representation of the gas equation,

pv = RO,

furnishes a rectangular hyperbola \vhen 6 is fixed or constant.

The law as set forth in the above equation shows that the volume

of a gas (v) varies inversely as the pressure (p) and directly as the

temperature (0). For any assigned value of 0, we can obtain a

series of values of p and v. For the sake of simplicity, let the

constant R = 1. Then if

e =



90 HIGHER MATHEMATICS. 43.

these numbers are called isothermals. Each isothermal (i.e.,

curve at constant temperature) is a rectangular hyperbola obtained

from the equation

pv = EB = constant, . . . (11)
similar to (10) above.

A series of isothermal curves, obtained by putting successively

equal to
lt 2 , 3 . . . and plotting the corresponding values of

p and v, is shown in Fig. 28.

FIG. 28. Isothermal _py-curves.

We could have obtained a series of curves from the variables p
and 6, or v and 6, according as we assume v or p to be constant.

If v be constant, the resulting curves are called isometric lines,

or isochores ;
if p be constant the curves are isopiestic lines, or

isobars. For van der Waals' equation, see page 398.

(2) Exposure formula for a thermometer stem. When a ther-

mometer stem is not exposed to the same temperature as the

bulb, the mercury in the exposed stem is cooled, and a small

correction must be made for the consequent contraction of the

mercury exposed in the stem. If x denotes the difference between

the temperature registered by the thermometer and the tempera-

ture of the exposed stem, y the number of thermometer divisions

exposed to the cooler atmosphere, then the correct temperature
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can be obtained by the so-called exposure formula of a thermometer,

namely,
= 0-00016sy, . . (12)

which has the same form as equation (10). By assuming a series

of suitable values for (say Ol . . . )
and plotting the result

for pairs of values of x and y, curves are obtained for use in the

laboratory. These curves allow the required correction to be seen

at a glance (see Ramsay, Chemical Theory, 1893, 11).

(3) Dissociation isotherm. Gaseous molecules under certain

conditions dissociate into simpler parts. Nitrogen peroxide, for

instance, dissociates into simpler molecules, thus :

Iodine at a high temperature does the same thing, I
2 becoming 27.

In solution a similar series of phenomena occur, KCl becoming

K + Cl, and so on. Let x denote the number of molecules of an

FIG. 29. Dissociation Isotherm (after Nernst and Schonflies).

acid or salt which dissociates into two parts called ions, (1
-

x)

the number of molecules of the acid, or salt resisting dissociation,

c the quantity of substance contained in unit volume, that is the

concentration of the solution. Nernst has shown that at constant

temperature

K =c x̂
.... (13)

where K is the so-called dissociation constant whose meaning is

obtained by putting x = 0'5. In this case K =
^c, that is to say,
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K is equal to half the quantity of acid or salt in solution when
half of the acid or salt is dissociated.

Putting K = 1 we can obtain a series of corresponding values

of c and x. For example, if

x = -16, 0-25, 0-5, 0-75, 0'94 . . .
;

then c = 32, 12, 2, 0'44, 0*07 . . .

It thus appears that when the concentration is very great, the

amount of dissociation is very small, and vice versa, when the

concentration is small the amount of dissociation is very great.

Complete dissociation can perhaps never be obtained. The graphic
curve (Fig. 29), called the dissociation isotherm (Nernst), is

asymptotic towards the two axes, but when drawn on <a small

scale the curve appears to cut the ordinate axis.

(4) The volume elasticity of a substance is defined as the ratio

of any small increase of pres-

sure to the diminution of

volume per unit volume of

substance. If the tempera-
ture is kept constant during
the change, we have iso-

thermal elasticity, while

if the change takes place

without gain or loss of heat,

adiabatic elasticity. If unit

volume of gas (v) changes

by an amount dv for an in-

crease of pressure dp, the

elasticity (E) is

dp
dv

FIG. 30. w-curves.

(14)

A similar equation is obtained by differentiating Boyle's law for

an isothermal change of state,

pv = constant, .... (15)

or p = - v^ (16)
dv

an equation identical with that deduced for the definition of volume

elasticity. Equation (16) is that of a rectangular hyperbola re-

ferred to its asymptotes as axes.

Let P(p, v) (Fig. 30) be a point on the curve pv = constant.

From the construction of figure 30, the triangles KNP and PMT



44. COORDINATE OR ANALYTICAL GEOMETRY. 93

are equal and similar (Euclid, i., 26). See example (2) page 85,

and note that KN is the vertical subtangent equivalent to -
p.

KN = - AT tan a = - v tan KPN,
dp

--??
that is to say, the isothermal elasticity of a gas in any assigned

condition, is numerically equal to the vertical subtangent of the

curve corresponding to the substance in the given state.

But since in the rectangular hyperbola KN = PM
,
the iso-

thermal elasticity of a gas is equal to the pressure (16). The

adiabatic elasticity of a gas may be obtained by a similar method

to that used for equation (14). If the gas be subject to an adia-

batic change of pressure and volume it is known that

pvy = constant = C (say), . . . (17)

or log 2? + ylogi1 = log C.

Differentiating and arranging terms

--
in other words the adiabatic elasticity of a gas is y times the

pressure. A similar construction for the adiabatic curve furnishes

KN:MP = KP\PT
= y:l,

that is to say, the tangent to an adiabatic curve is divided at the

point of contact in the ratio y : 1.

44. Polar Coordinates.

Instead of representing the position of a point in a plane in

terms of its horizontal and vertical distances along two standard

lines of reference, it is sometimes more con-

venient to define the position of the point

by a length and a direction. For example,
in Fig. 31 let the point be fixed, and Ox
a straight line through 0. Then, the position

of any other point P will be completely de-

fined if (1) the length OP and (2) the angle FIG. 31. Polar Co-

OP makes with Ox, are known. These are

called the polar coordinates of P, the first is called the radius

vector, the latter the vectorial angle. The radius vector is

* From other considerations, Eq is usually written A'<f-
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generally represented by the symbol r, the vectorial angle by 0,

and P is called the point P(r, 0), is called the pole and Ox the

initial line. As in trignometry, the vectorial angle is measured by

supposing the angle has been swept out by a revolving line

moving from a position coincident with Ox to OP. It is pos-

itive if the direction of revolution is contrawise to the motion of

the hands of a clock.

FIG. 32. FIG. 33.

To change from polar to rectangular coordinates and vice versa.

In Fig. 32, let (r, 6) be the polar coordinates of the point P(x, y).

Let the angle x'OP = 9.

First, to pass from polar to Cartesian coordinates.

HP y OM

(1)

In the

y = r sin and x = rcos$,
which determines x and y, when r and 6 are known.

Second, to rjass from Cartesian to polar coordinates.

same figure

HP y '

(OP)
2

=

tan
~ * *

;
r = + (2)

which determines and r, when x and y are known. The sign

of r is ambiguous, but, by taking any particular solution for 0,

the preceding remarks will show which sign is to be taken.

Just as in Cartesian coordinates an equation between r and 6

may represent one or more curves. The graph may be obtained

by assigning convenient values to 6 (say 0, 30, 45, 60, 90 . . .)

and determining the corresponding value of r from the equation.
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EXAMPLE. Show that the polar equations of the hyperbola and ellipse

1 eos2 sin2 1 cos2 sin2

are respectively ^ =
-^-

-

^ and ^
=

fl8 -55-.

NOTE. The parabola, ellipse and hyperbola are sometimes defined as

curves such that the ratio of the distance of any point on the curve from

a fixed line and from a fixed point, is constant. The ratio is called the

eccentricity, and is denoted by the letter e, the fixed point is called the

/oc?ts, the fixed line, the directrix.

In Fig. 33 let OAT be directrix, F the focus, AP any curve, I'K is a

perpendicular from P on to the directrix, PM is perpendicular from P on to

OF produced. A is vertex of curve. Then if

FP
e =

p-fr
= constant = 1, the curve is parabolic,

FP
e = pj

= constant- <1, the curve is elliptical,

FP
e = pj

= constant >1, the curve is hyperbolic.

These definitions ultimately furnish equations for the hyperbola, ellipse and

parabola similar to those adopted above. Let FP = r, OF = p, then from

these definitions

PK = OF + FM = p + r cos 6,

(3)

which is true whether curve be hyperbolic, elliptical or parabolic.

45. Logarithmic or Equiangular Spiral.

Equations to the spiral curves are considerably simplified by the use of

polar coordinates. For instance, the curve for the logarithmic spiral, though
somewhat complex in Cartesian coordinates, is represented in .polar coordi-

nates by the simple equation
r = a,

where a may have any constant value. Hence

log 7- = 01oga.

Let Ci, G', c' . . . (Fig. 34) be a series of points on the spiral corresponding
to the angles 3 , 6.,. . . ., then r

lt r.,, . . . will represent the corresponding
radii vectores, so that

log r,
= 6

1 log a ; log r., = 2 log ...
Since log a is constant, say equal to fc,

that is, the logarithm of the ratio of the distance of any two points on the

curve from the pole is proportional to the angle between them. If r
l
and r.,

lie on the same straight line, then
-

2
= 2ir = 360,

being the symbol used in trignometry to denote 180,

.-. log- =2k*.
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Similarly, it can be shown that if rs ,
r
4 . . . lie on the same straight

line, the logarithm of the ratio of r
a to r

s ,
r
4 . . . is given by 4for, 6kv. . . .

This is true for any straight line passing through O, that is to say, the spiral

is made up of an infinite number of turns which extend inwards and outwards

without limit.

If the radii vectores OC^ OD, OE . . . OC, Od . . . be taken to repre-
sent the number of vibrations of a sounding body in a given time, the angles

CiOD, DOE . . . may be taken as a measure of the interval between the

FIG. 34. Logarithmic Spiral (after Donkin).

tones produced by these vibrations. A point travelling along the curve will

then represent a tone continuously rising in pitch, and the curve, passing

successively through the same line produced, represents the passage of the

tone through successive octaves. The geometrical periodicity of the curve is

a graphical representation of the periodicity perceived by the ear when a tone

continuously rises in pitch.

In the above diagram the angles C^OD, DOE . . . represent the intervals

in the diatonic scale. The intervals

Cj to D, F to (?, A to B are major seconds, each 61 10' 22"
;

D to E, G to A are minor seconds, each 54 43' 16"
;

E to F, B to C are diatonic semitones, each 33 31' 11"

(Donkin's Acoustics, page 26).

This diagram may also be used to illustrate the Newlands-Mendeleeff law

of octaves, by arranging the elements along the curve in the order of their

atomic weights.

EXAMPLES. (1) Plot Archimedes' spiral, r a6. . . . (4)

(2) Plot the hyperbolic spiral, rO = a, . . . (5)
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C D a.

FIG. 35. Trilinear Coordinates.

46. Trilinear Coordinates and Triangular Diagrams.

Another method of representing the position of a point in a

plane is to refer it to its perpendicular distance from the sides of a

triangle called the triangle of reference.

The perpendicular distances of the

point from the sides are called tri-

linear coordinates. In the equi-

lateral triangle ABC (Fig. 35), let the

perpendicular distance of the vertex A
from the base EC be denoted by 100

units, and let P be any point within the

triangle whose trilinear coordinates are

Pa, Pb, PC, then

Pa + Pb + PC = 100.

This property has been extensively used in the graphic repre-

sentation of the composition of certain ternary alloys, and mixtures

of salts. Each vertex is supposed to represent one constituent of

the mixture. Any point within the triangle corresponds to that

mixture whose percent-

age composition is repre-

sented by the trilinear

coordinates of that point.

Any point on a side of

the triangle represents a

binary mixture. Fig.

36 shows the melting

points of ternary mix-

tures of isomorphous
carbonates of barium,

strontium and calcium.

Such a diagram is some- BC03
SrC 3

times called a surface of
FlG - 36. Surface of Fusibility.

fusibility. A mixture melting at 670 may have the composition

represented by any point on the isothermal curve marked 670,
and so on for the other isothermal curves.

In a similar way the composition of quaternary mixtures has

been graphically represented by the perpendicular distance of a

point from the four sides of a square.

Roozeboom, Bancroft and others have used triangular diagrams
G
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with lines ruled parallel to each side as shown in Fig. 37. Suppose
we have a mixture of three salts, A,B, C, such that the three vertices

of the triangle ABC represent phases
*

containing 100 / of each

component. The composition of any binary mixture is given by a

point on the boundary lines of the triangle, while the composition of

any ternary mixture is represented by some point inside the triangle.

The position of any point inside the triangle is read directly from

the coordinates parallel to the sides of the triangle. For instance,

the composition of a mixture represented by the point is given

p o

FIG. 37. Concentration-Temperature diagram (after Bancroft).

by drawing lines from 0, parallel to the three sides of the triangle

OP, OR, OQ. Then start from one corner as origin and measure

along the two sides, AP fixes the amount of C, AQ the amount of

B, and, by difference, GE determines the amount of A. For the

point chosen, therefore A = 40, B 40, C = 20.

(1) Suppose the substance A melted at 320, B at 300, and C
at 305, and that the point D represents an eutectic alloy j- melting

* A phase is a mass of uniform concentration. The number of phases in a system
is the number of masses of different concentration present. For example, at the tem-

perature of melting ice three phases may be present in the /f20-system, viz., solid ice,

liquid water and steam
;

if a salt is dissolved in water there is a solution and a vapour

phase, if solid salt separates out, another phase appears in the system.

f An eutectic alloy is a mixture of two substances in such proportions that the

alloy melts at a lower temperature than a mixture of the same two substances in any
other proportions. The numbers chosen are based on Guthrie's work (Philosophical

Magazine [5], 17, 462, 1884) on the nitrates of potassium (.4), lead (B), sodium (C).
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at 215 ;
at E, A and B form an eutectic alloy melting at 207 ; at

F, B and C form an eutectic alloy melting at 268.

(2) Along the line DO, the system A and C has a solid phase ;

along EO, A and B have a solid phase ;
and along FO, B and C

have a solid phase.

(3) At the triple point 0, the system A, B and C exists in the

three solid, solution and vapour phases at a temperature of 186 (say).

(4) Any point in the area ADOE represents a system com-

prising solid, solution and vapour of A, in the solution, the two

components B and C are dissolved in A. Any point in the area

CDOF represents a system comprising solid, solution and vapour
of C, in the solution, A and B are dissolved in C. Any point in

the area BEOF represents a system comprising solid solution and

vapour of B, in the solution, A and C are dissolved in B.

Each apex of the triangle not only represents 100 / of a

substance, but also the temperature at which the respective

substances A, B, or C melt ; D, E, F also represent temperatures
at which the respective eutectic alloys melt. It follows, therefore,

that the temperature at D is lower than at either A or C. Simi-

larly the temperature at E is lower than at A or B, and at F
lower than at either B or C. The temperature, therefore, rises

as we pass from one of the points D, E, F to an apex on either side.

For full details the reader is referred to Bancroft's The Phase

Rule, 1897, p. 147.

47. Orders of Curves.

The order of a curve corresponds with the degree of its equa-

tion. The degree of any term may be regarded as the sum of the

exponents of the variables it contains ;
the degree of an equation

is that of the highest term in it. For example, the equation

xy + x + bz
y = 0, is of the second degree if b is constant ;

the

equation ar { + xy = 0, is of the third degree ; xz
yz

z + ax = 0, is of

the sixth degree, and so on.

1st. A line of the first order is represented by the general

equation of the first degree
ax + by + c = . . . . (1)

This equation is that of a straight line only.

2nd. A line of the second order is represented by the general

equation of the second degree between two variables, namely,
ax2 + %hxy + by* + %gx + %fy + c = . . (2)
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This equation includes, as particular cases, every possible form of

equation in which no term contains x and y as factors more than

twice. The term 2hxy can be made to disappear by changing the

direction of the rectangular axes, and the terms containing 2gx
and 2/2/ can be made to disappear by changing the origin of the

coordinate axes. Every equation of the second degree can be

made to assume one of the forms

ax* + by
2 =

q, . (3)

or y
2 = px . . . . . (4)

The first can be made to represent a circle,* ellipse, or hyperbola ;

the second a parabola. Hence every equation of the second degree

between two variables includes four species of curves circle, ellipse,

parabola and hyperbola.

It must be here pointed out that if two equations of the first

degree with all their terms collected on one side be multiplied

together we obtain an equation of the second degree which is

satisfied by a quantity which satisfies either of the two original

equations. An equation of the second degree may thus represent

two straight lines, as well as one of the above species of curves.

The same thing applies for equations of the third and higher

degrees.

The condition that the general equation of the second degree may represent

two straight lines. Rearranging the terms of equation (2) in descending

powers of y, we obtain

by* + 2(fa; + f)y + ax2 + 2gx + c = 0.

This may be solved like a quadratic in y with the result that

y= N/{(ft
a -

ab)x* + 2(hf
-

bg)x + (f*
-

6c)}/6
-

(hx +
f)[b

(5)

an expression analogous to the tangent form of the equation to a straight line,

y = mx + b.

The two solutions in equation (5) can only represent straight lines if the

quantity under the root sign can be extracted as a simple rational expression

in x, that is to say, if

(h*
-

ab)x
z + 2(fe/

-
bg)x + (f*

-
be)

is a perfect square (see page 388). This condition is satisfied when

(hf
-

bg)* = (h*
-

ab) (/
-

be).

Multiplying out and dividing by b (when b is not zero)

abc + 2fgh
-

af*
-

bg*
- cW = 0. . . . (6)

If b = and a is not zero, we obtain the same result by solving for x.

If a = b = 0, resolve the original expression into factors and

(x + flh) (y + gjh) = 0,

provided c/2fe
= fg/W, or 2fgh

- cW - 0. This agrees with equation (6). Under

* The circle may be regarded as an ellipse with major and minor axes equal.



48. COORDINATE OR ANALYTICAL GEOMETIIY. 101

these circumstances equation (2) represents two straight lines respectively

parallel to the two axes.

The general equation of the second degree may represent a parabola, ellipse,

or Jujperbola, according as h? - ab, is zero, negative, or positive.

EXAMPLE. Show that the equation
S.ra - 3xy -

3y* + 5f + 4y + 4 = 0,

represents two straight lines as well as an ellipse.

3rd. A line of the third order is represented by the general

equation of the third degree between two variables

ay* + by
2x + cyx

2 + fx* + . . . + n =
. (7)

Sir Isaac Newton has shown that some eighty species of lines are

included in this equation ; these may be reduced to one of the

following four classes :

a#3 + bx2 + ex + / = xy
2 + gy . . (8)

ax* + bx2 + ex + / = xy . . . . (9)

ax3 + bx2 + ex + f = y
2

. . . . (10)

ax3 + bx2 + ex + f = y . . . . (11)

The last (equation 11) includes the cubical parabola i/
3 = ax.

EXAMPLES. The student will gain more information by plotting all these

curves on squared paper, than by reading pages of descriptive matter. Use

table of cubes, page 517.

4th. A line of the fourth order is represented by the general

equation of the fourth degree between two variables, viz.,

ay
4 + by*x + cy

2x2 + fyx
3 + . . . + t = . (12)

Euler divided these into some 200 species which reduce to 146

classes. At the present time the number of species is said to

exceed 5,000.

A family of curves is an assemblage of curves defined by one equation of

an indeterminate degree. For example, the number of parabolas whose abscis-

sae are proportional to any power of the ordinates is infinite. Their equation is

y
n = ax.

For the common or quadratic parabola n 2, for the cubic parabola n = 3,

and for the biquadratic parabola n = 4.

The study of curves of higher orders than the third is perhaps
more interesting than useful, at least so far as practical work is

concerned.

48. Coordinate Geometry in Three Dimensions. Geometry
in Space.

(1) The graphic representation of functions of three variables.

Methods have been described for representing changes in the state
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of a system involving two variable magnitudes, by the locus of a

point moving in a plane according to a fixed law defined by the

equation of the curve. Such was the _pv-diagram described on

page 90. There, a series of isothermal curves were obtained,

when was made constant during a set of corresponding changes
of p and v in the equation

pv = EO,

where H is constant.

When any three magnitudes, x, y, z, are made to vary together,

we can, by assigning arbitrary values to two of the variables, find

corresponding values for the third, and refer the results so ob-

tained to three fixed and intersecting planes called the coordinate

planes. The lines of inter-section of these planes are the

coordinate axes. Of the re-

sulting eight quadrants, four

of which are shown in Fig. 38,

only the first is utilised to any

great extent in mathematical

physics. This mode of graphic

representation is called geome-

try in space, or geometry in

three dimensions.

If we get a series of sets of

corresponding values of x, y, z

in the equation
FIG. 38. Cartesian Coordinates in x + y = z,

Three Dimensions. -, , ,-, .-,.and refer them to coordinate

axes in three dimensions, as described below, the result is a plane
or surface. If one of the variables remains constant, the result-

ing figure is a line. A surface may, therefore, be considered to be

the locus of a line moving in space.

The position of the point P with reference to the three co-

ordinate planes xOy, xOz, yOz (Fig. 38) is obtained by dropping

perpendiculars PL, PM, PN from the given point on to the three

planes. Complete the parallelepiped, as shown in Fig. 38. Let

OP be a diagonal. Then LP = OA, NP = OB, HP = OC.

To find the point luhose coordinates OA, OB, OC are given.

Draw three planes through A, B, C parallel respectively to the

coordinate planes ; the point of intersection of the three planes,

namely P, will be the required point.
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If the coordinates of P, parallel to Ox, Oy, Oz, are respectively

x, y and z, then P is said to be the point x, y, z. A similar

convention with regard to the

sign is used as in analytical geo-

metry of two dimensions, with

the additional convention that y
is positive when in front of

;

negative, when behind. It is

necessary that the reader shall

have a clear idea of spatial geo-

metry in working many physical

problems.

(2) To find the distance of a ^/ M

point from the origin in terms of

the rectangular coordinates of that point. In Fig. 39, let Ox, Oy, Oz

be three rectangular axes, P(x, y, z) the given point such that

PM = z, MA =
y, OA = x. It is required to find the distance

OP = r, say. From the construction (rectangular coordinates)

OP2 = OM2 + PM 2
,
or r2 = OM 2 + z2

,

but OM'2 = MA'2 + OA 2 = x2 + y
2

.

r2 = x2 + f' + z'
2

(1)

Let the angle POx = a
; POy =

ft ;
POz =

y, then

x = r cos a
; y = r cos ft ;

z = r cos y . (2)

These equations are true wherever the point P may lie, and

therefore the signs of x, y, z are always the same as those of cos a,

cos ft, cos y respectively. Substituting these values in (1), and

dividing through by r2
,
we get the

following relation between the three

angles :

COS2a + COS'2ft + COS'2y =1. (3)

These cosines are called the direc-

tion cosines, and are usually sym-
bolised by the letters /, m, n. Thus

(3) becomes

(3) To find the distance between

two points in terms of their red- FlQ - 40 -

angular coordinates. Let P^x^ ylt zj, P2(#2 , y.2 ,
z
2)

be the given

points, it is required to find the distance PjP2
in terms of,the

coordinates of the points P
l
and P . Draw planes through P

l
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and P
2 parallel to the coordinate planes so as to form the parallele-

piped ABODE. By the construction (Fig. 40), the angle P
1
EP2

is a right angle. Hence

PjP2
2 = Pj#2 + P

2
E* = P^2 + DE* + P2

D*.

ButP^ is evidently the difference of the distance of the foot of

the perpendiculars from P
l
and P

2 on the a?-axis, or P
l
E = x

2
-x

l
.

Similarly DE = y2
-

ylt
P

2
D = z

2
- zr Hence

^

r2 =
(x2

-
x,Y + (y,

-
y,Y + (**

-
*i)

2
. (5)

(4) To find the angle between two straight lines whose direction

cosines are given. In the preceding diagram (Fig. 40) join OP
1

and OP
2

. Let
\f/

be the angle between these two lines. In the

triangle P2
OP

l (formula 47, page 500) if OP
l
= r

l ,
OP

2
= r

2 ,
P

X
P

2
=

r,

r2 = r
x

2 + r
2
2 - 2^ cos

if/.

Eearranging terms and substituting

r
x
2 = x* + y,

2 + V ;
r
2
2 = x* + y* + 2

2
,

we get
cos ^ = (x^ + yM2 + ^^2)/

r
i
r
2-

Substituting, as in (2),

x
l
= r

x
cos aj ; x

2
= r

2
cos a

2 ; y2
= r

2
cos (32 . . .

COS
l//
= COS

ttj
. COS a

2 + COS (3l
. COS y82 + COS yx

. COS y2 (6)

or, from (4),

COS
\jr
=

IJ2 + WjWg + ?^W2 ,
... (7)

which represents the angle between two straight lines whose

direction cosines are known.

If the lines are perpendicular, cos
\f/

cos 90 = 0. Hence

COS
ttj

. COS a
2 + COS /^ . COS /32 + COS y1

. COS y2
=

(8)

IJ2 + m^m^ + n-^n.2
=

. . (9)

If the vectors r
lt

r
2 (page 93) are known, multiply (6) by r^,

and, remembering that

r
x
cos a

x
= x

1 ',
r
2
cos a

2
= x

2 ;
r
2
cos y2 = z

2 , etc.,

we may write a preceding result :

* rfa cos ^ = x^2 + y$2 + z^ t
. (10)

and when the lines are perpendicular,

(5) Projection. If a perpendicular be dropped from a given

point upon a given plane the point where the perpendicular touches

the plane is the projection of the point P upon that plane. For

instance, in Fig. 38, the projection of the point P on the plane

xOy is M, on the plane xOz is N, and on the plane yOz is L.

Similarly, the projection of the point P upon the lines Ox, Oy, Oz

is at A
,
B and C respectively.
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In the same way the projection of any curve on a given plane

is obtained by projecting every point in the curve on to the plane.

The plane, which contains all the perpendiculars drawn from the

FIG. 41. Projecting Plane. FIG. 42.

FIG. 43.

different points of the given curve, is called the projecting plane.

In Fig. 41, CD is the projection of AB on the plane EFG ;
ABCD

is the projecting plane.

EXAMPLES. (1) The pro-

jection of any given line on

an intersecting line is equal
to the product of the length of

the given line into the cosine

of the angle of intersection.

In Fig. 42, the projection of

AB on CD is AE, but AE =
AB cos 6.

(2) In Fig. 43, show that

the projection of OP on OQ
is the algebraic sum of the

projections of OA, AM, MP,
taken in this order, on OQ. Hence, if OA = x, OB = AM = y, OC = PM = z

and OP = r, from (6)

r cos ^ = x cos a + y cos + z cos 7 . . . (12)

(6) To find the equa-
tion of a plane surface in

rectangular coordinates.

Let ABC (Fig. 44) be the

given plane whose equa-
tion is to be determined.

Let the given plane cut

the coordinate axes at

points A, B, C, such that

OA = a, OB = 6, OC = c.

From any point P(x, y, z)

drop the perpendicular
FIG. 44.
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PM on to the yOx plane. Then OA' = x, MA' = y and PM = z.

It is required to find an equation connecting the coordinates with

the intercepts a, b, c. From the similar triangles AOB, AA'B',

OA'.OB = A'A : A'B'
;
or a : b = a - x : A'B',

.'. A'B' = b -
; similarly, MB' = b - y -- .

Again, from the similar triangles COB, C'A'B', PMB',
7)7-

CO : OB = PM : MB'
;
or c : b = z : b -

y -
,

bcx
.-, bz = cb -

cy
- -.

a

Divide through by be and rearrange for the required :

an equation very similar in form to that developed on page 69.

We may write this equation in its most general form,

Ax + By + Cz + D = 0, . . .

which is the most general equation of the first degree between

three variables. Equation (14) is the general equation of a

plane surface. It is easily converted into (13) by substituting

Aa + D = 0, Bb + D = 0, Cc + D = 0.

If OQ = r (Fig. 44) be a perpendicular on the plane ABC, the

projection of OP on OQ is equal to the sum of the projections of

OM, PM, MA on OQ (see example (2), page 105). Hence

x cos a + y cos y8 + z cos y = r . . (15)
from (14)

cos2a : cos2
: cos2

7 =A2
: B2

: C'2

componendo,*

(C08
2a + COS2 + COS2

y) I COS2a - A2 + B'2 + C2
: A2

.

But by (3), the term in brackets is unity,

' cosa =
ffl + o

; cos/3 =

ri

cos =

* If a, &, c and d are proportionals,

a : b = c : d
b : a = d : c (invertendo)

a : c b : d . . . . . . (alternando)
a + b:b = c + d:d. . . , . (componeiulo]

a b : b c - d : d (dimdendo)
a : a b = c : c d . . . . . (convertendo)

a + b:a + b = c + d: c + d . . . . (componendo et dimdendo).

(See any elementary text-book on algebra.),
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Dividing equation (14) through with

from (16),

+ ff2 + C2
,
we get,

D
X COS a + y COS ft + Z COS y = -

-j======^ (17)

where - D / J(A
2 + B1 + C'2

) represents the distance of the plane

from the origin.

If ABC (Fig. 44) represents the face, or plane of a crystal, the intercepts

a, b, c on the #-, y- and z-axes are called the parameters of that plane. The

parameters in crystallography are usually expressed in terms of certain axial

lengths assumed unity. If OA = a, OB = b, OC = c, any other plane, whose

intercepts on the j>, y- and 2-axes are respectively p, q and r, is defined by
the ratios

a b c

p
'

q
'

r'

These quotients are called the parameters of the new plane. The reciprocals

of the parameters are the indices of a crystal face. The several systems of

crystallographic notation which determine the position of the faces of a

crystal with reference to the axes of the crystal are based on the use of

parameters and indices.

(7) To find the equation of a straight line in rectangular co-

ordinates. A line in space is represented in mathematics by
two equations. If we consider a

straight line in space to be formed

by the intersection of two projecting

planes, formed, in turn, by the pro-

jection of the given line on two

coordinate planes, the equation to

the straight line evidently consists of

two parts. Let ab, a'b' be the projec-

tion of the given line AB on the xOz

and the yOz planes, then (Fig. 45)

x = mz + c ; y = m'z + c'. (18)

Here m represents the tangent of

the angle which the projection of

the given line on the xOz plane makes with the #-axis ;
m the tan-

gent of the angle made by the line projected on the yOz plane

with the ?/-axis ;
c is the distance intercepted by the projection of

the given line on the #-axis ; c', a similar ihtersection on the y-axis.

If we eliminate z from equation (18),

y-c' =
^(x-c) . . . (19)

represents the projection of the given line on the xOy plane.

\
B

FIG. 45.
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(8) Surfaces of revolution. A surface is assumed to have been

generated by the motion of a line in space. If the line rotates

round a fixed axis, the rotating surface is called a surface of revo-

lution. Thus, a sphere may be formed by the rotation of a circle

about a diameter
;
a cylinder may be formed by the rotation of a

rectangle about one of its sides as axis
;
a cone may be generated

by the revolution of a triangle about its

axis
; an ellipsoid of revolution, by the

rotation of an ellipse about its major or

minor axes
;
a paraboloid, by the rotation

of a parabola about its axis. If an hyper-
bola rotates about its transverse axis,

two hyperboloids will be formed by the

revolution of both branches of the hyper-
bola. On the other hand, only one

hyperboloid is formed by rotating the

hyperbolas about their conjugate axes.

In the former case, the hyperboloid is

said to be of two sheets, in the latter, of

one sheet.

(9) To find the equation of the surface

of a right cylinder. Let one side of a

rectangle rotate about Oz as axis. Any point on the outer edge
will describe the circumference of a circle. If P(x, y, z] (Fig. 46)

be any point on the surface, r the radius of the cylinder, then the

required equation is

r2 = x* + y
2

. . . . (20)

The equation to a right cylinder is thus independent of z. This

means that z may have any value whatever assigned to it.

EXAMPLES. (1) Show that the equation of a right coneis x
2 + y

2 - 22tan2
<J>
= 0,

where <> represents half the angle at the apex of the cone. (Origin of axes is

at apex of cone.)

(2) The equation of a sphere is x2 + y
2 + z2 = r2 . Prove this.

(10) To find the equation of the tangent plane
* at any point of

a surface. Let P(xlt y^z^) be any point on the curved surface,

z=f(x,y). . (21)

The tangent plane through the point P(xlt ylt zj will be determined

FIG. 46.

* The tangent plane of a surface is a plane which touches the surface at a point, or

a line.
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when two linear tangents through this point have been determined.

For the sake of simplicity, consider the linear tangents parallel to

the xz- and the zy-pl&nes. As an exercise after (6), page 83,

the reader will be able to show that these two tangent lines have

equations,
ft.9

(22)z , -^te-
1 dx^

z - z
l
= ~(y -

2/0 ;
x = xv (23)

where the partial derivatives, dzjdx^ dzjdy^ obviously represent

the trignometrical tangents of the lines of intersection of the tan-

gent plane with the coordinate planes xz and zy respectively.

Hence, the equation to this plane is,

dz, ,
dz, ,

EXAMPLE. Prove that the tangent plane to the surface

u = /(z, y, z)
= 0,

du du du
(25>

(11) Polar coordinates. Instead of referring the point to its-

Cartesian coordinates in three dimen-

sions, we may use polar coordinates.

In Fig. 47, let P be the given point

whose rectangular coordinates are x, y,

z
;
and whose polar coordinates are r,

0, <, as shown in the figure.

(i)
To pass from rectangular to

polar coordinates.

x=OA = OMcos
<f>
= r sin . cos <)

(26)

,.. x m / i FIG. 47. Polar Coordinates in

(n) To pass from polar to rectangu- Three Dimensions .

lar coordinates.

r =

(27)
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49. Orders of Surfaces.

49.

Just as an equation of the first degree between two variables

represents a straight line of the first order, so does an equation of

the first degree between three variables represent a surface of the

first order. Such an equation in its most general form is

Ax + By + Cz + D = 0,

the equation to a plane.

An equation of the second degree between three variables re-

presents a surface of the second order. The most general

equation of the second degree between three variables is

Ax* + By2 + Cz'2 + Dxy + Eyz + Fzx + . . . + N = 0.

All plane sections of surfaces of the second order are either circular,

parabolic, hyperbolic, or elliptical, and comprised under the generic

word conicoids, of which spheroids, paraboloids, hyperboloids and

ellipsoids are special cases.

A surface of the second degree may be formed by plotting from

the gas equation

f(p, v,6) = 0; or pv = BO,

by causing p, v and 6 to vary simultaneously. The surface pabv

(Fig. 48) was developed in this way.

FIG. 49.

FIG. 48. jpv0-surface.

Since any section cut perpendicular to the 0-axis is a rect-

angular hyperbola, the surface is an hyperboloid. The isothermals

6, 2 ,
^3 ,

... (Fig. 28, page 90) may be looked upon as plane

sections cut perpendicular to the #-axis at points corresponding to

O
lt 2 > >

an^ tnen projected upon the pv-pl&ne. In Fig. 49,

the curves corresponding to pv and ab have been so projected.
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If a sufficient number of such projections were available, the

characteristic equation, f(p, v, 6)
= 0, would be solved completely.

As a general rule, the surface generated by three variables is

not so simple as the one represented by a gas obeying the simple
laws of Boyle and Gay Lussac.

van der Waals "<|/" surfaces are developed by using the

variables ty, x, v, where ^ denotes the thermodynamic potential at

I'oM-uaiit volume (U -
0<f>) ;

x the composition of the substance
;
v

the volume of the system under investigation. The "i^" surface

is analogous to, but not identical with, pabv in the above figure.

Full particulars are given in van der Waals' classic, Die Continuitdt

des (jasfrrmigen und fliissiyen Zustandes, Theil II.

The so-called thermodynamic surfaces of Gibbs are obtained

in the same way from the variables v, U, </> (or volume, internal

energy and entropy) of a given system. They are described with

some detail in Preston's Theory of Heat, page 685, or better still,

Le Chatelier's Equilibre des systemes chimiques par J. Willard

Gibbs, p. 98 (see also page 343).
*

50. Periodic or Harmonic Motion.

Let P (Fig. 50) be a point which starts to move from a position
of rest with a uniform velocity on the perimeter of a circle. Let

xOx, yOy' be coordinate

axes about the centre O.

Let P
lf
P

2 . . . be positions

occupied by the point after

the elapse of intervals of

time
Jj, ^

2 ... From P
l

drop the perpendicular
M

l
P

l
on to the #-axis.

Remembering that if the

direction of M^, M
2P.2

... be positive, that of

3f
3
P

3 ,
M

4P4 is negative, and
the motion of OP as P
revolves about the centre

in the opposite direction
FIG. 50. Harmonic or Periodic Motion.

to the

then

hands of a clock is conventionally reckoned positive,
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~M~PS ~M
4P4=

^oir-;
sma

4
=

;FB^
Or, if the circle have unit radius r = 1,

sinaj
= + M-f-i', sina

2
= + M2P2 ; sina

3
= - M

3
P

S ; sina4
= - M

4
P

4 .

If the point continues in motion after the first revolution, this series

of changes is repeated again and again.

During the first revolution, if we put TT = 180, and let O
lt 2 ,.

. . . represent certain angles described in the respective quadrants,
6
l
=

aj ; $2
= TT a

2 ; $3
= TT + a

g ; 4
= 2ir a

4
.

During the second revolution,

1
= 2?r + ai ; 2

= 2?r + (TT
- a.

2) ;
O
z
= 2?r + (TT + a

3), etc.

We may now plot the curve

y = sin a . . (1)

by giving a series of values 0, JTT, |TT . . . to a and finding the

corresponding values of y. Thus if

X = a = 0, ^TT, TT, |TT, 2?r, fTT, . . . ;

y = sin 0, sin
JTT, sin TT, sin |TT,

sin 2?r, sin
|TT, . . . ;

= sin 0, sin 90, sin 180, sin 270, sin 360, sin 90, . . .
;

=
1, 0,

-
1, 0, 1, 0, ...

Intermediate values are sin JTT
= sin 45 = '707, sin |TT

= - -707 . . .

The curve so obtained has the wavy or undulatory appearance
shown in Fig. 51. It

y is called the curve of

sines or the har-

monic curve.

_ A function whose

value* recurs at fixed

intervals when the

variable uniformly in-

creases in magnitude
FIG. 51.-Curve of Sines, or Harmonic Curve.

ig ^ to be ft

odic function. Its mathematical expression is

f(t)=f(t +
nt)^

(2)

where n may be any positive or negative integer. In the present case

n = 2?r. The motion of the point P is said to be a simple harmonic

motion. Equation (1) thus represents a simple harmonic motion.

If we are given a particular value of a periodic function of,

say, t, we can find an unlimited number of different values of t

which satisfy the original function. Thus 2$, 3, It, . . ., all

satisfy equation (2).
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EXAMPLES. (1) Show tliat the graph of y = cos a has the same form as

the sine curve and would he identical with it if the //-axis of the sine curve

were shifted a distance of $TT to the right. [Proof : sin ($ir + x) cos x, etc.]

The physical meaning of this is that a point moving round the perimeter of

the circle according to the equation y = cos a is just $*, or 90 in advance of

one moving according to y = sin a.

(2) Illustrate graphically the periodicity of the function y = tan a. (Note
the passage through + oo.)

Instead of taking a circle of unit radius, let r denote the mag-
nitude of the radius, then

y = r sin a.

Since sin a can never exceed the limits + 1, the greatest and least

values y can assume are - r and + r
;
r is called the amplitiule of

the curve. The velocity of the motion of P determines the rate at

which the angle a is described by OP (called the aiujular velocity).

Let t denote the time, o> the angular velocity,

da

Tt
= "> r wt,

and the time required for a complete revolution is

t = 27T/W,

which is called the periodic value of a, or period of oscillation, or

periodic time
;

2?r is the wave, length. If E (Fig. 50) denotes some

arbitrary fixed point such that the periodic time is counted from

the instant P passes through E, the angle xOE =
e, is called the

epoch, and the angle described

by OP in the time t = ut + e

= a, or

y = r sin (wt 4 e) . (3)

Electrical engineers call the

lead or, if negative, the lag of

the electric current.

EXAMPLE. Show that the

graph of equation (3) may be re-

presented by a curve of the form

shown in Fig. 52. FIG. 52.

The motion of M (Fig. 50), that is to say, the projection of the

moving point on the diameter of the circle xOx' is a good illustra-

tion of periodic motion, already discussed, page 48. The motion

of an oscillating pendulum, of a galvanometer needle, of a tuning

fork, the up and down motion of a water wave, the alternating

electric current, sound, light, and electromagnetic waves are all

H
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periodic motions. Many of the properties of the chemical ele-

ments are periodic functions of their atomic weights (Newlands-
Mendeleef law). Some interesting phenomena have recently come
to light which indicate that chemical action may assume a periodic
character.* The evolution of hydrogen gas, when hydrochloric acid

acts on one of the allo-

tropic forms of chromi-

um, has recently been

studied by W. Ost-

wald.l He found that

if the volume of gas
evolved during the

action be plotted as
FIG. 53.-Ostwald's Curve of Chemical Action. ordinate against the

time as abscissa, a curve is obtained which shows regularly alter-

nating periods of slow and rapid evolution of hydrogen. The

particular form of these " waves
"

varies with the conditions of the

experiment. One of Ostwald's curves is shown in Fig. 53.

Composition of harmonic motions. It is important to remember

that two or more simple harmonic motions may be compounded
into one. Thus it can be shown that

a sin (qt + e) -f b cos (qt + e)
= A sin (qt + ej . (4)

where q has the same meaning as w above. Expand the left-hand

side of (4) according to formulae (21) and (22), page 499 ; re-

arrange terms to obtain

= sin qt(a cos e - b sin
e) + cos qt(b cos e + a sin e) ;

= A sin (qt + e^,

provided
A cos

j
= a cos e - b sin e

;
A sin

l
= b cos e + sin e. (5)

Square equations (5) and add
A* = a 2 + b'

2
(6)

*
Abney has noticed that if a photographic film be "exposed" for a much

longer period than is required it will after a certain interval return to a sensitive

condition. Troost and Hautefeuille state that silicon hexachloride (Stt2C76 )
is stable

above 1,0.00 and below 350; hydrazine hydrate (NZH4 .H2O) ;
ozone (Os ), hydrogen

selenide (H%Se); cyanogen (C2N2) ; acetylene (C2H2 ) 5
and nitrogen peroxide (A^O.,)

are said to exhibit similar phenomena ;
the action of chlorine on platinum, of oxygen

on copper and on phosphorus is also said to be similar. Many of these statements,

no doubt, arise from a faulty interpretation of experimental work. But the subject

certainly merits a closer investigation.

f W. Ostwald, Zeitschrift fur physlkalische Chemie, 35, 33, 204, 1900
; Brauner,

ih., 38,441, 1901.
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Divide equations (5), rearrange terms and show that

tan(c
-

l )
= -b/a, .... (7)

from formulae (21) and (22), page 499. When c = 0,
tan

l
= b'a. . . . . . (8)

liquations (6) and (7) are the necessary conditions that (4)

may hold good. Give a geometrical inter-

pretation to (4), (6) and (8), by means of

figure 54. N

EXAMPLES. (1) Draw the graphs of the two

curves,

y = a sin (qt + e) and yl
= a sin (qt + *

j).

Compare the result with the graph of

yz = a sin (qt + ) + % sin (qt + ej.

(2) Draw the graphs of

yl
= sin x, y.2

= \ sin x, y, = i sin 5.r, y = sin x + } sin 3x + i sin 5x

(see page 363 for this and other examples).

51. Generalised Forces and Coordinates.

When a mass of any substance is subject to some physical

change, certain properties (mass, chemical composition) remain

fixed and invariable, while other properties (temperature, pressure,

volume) vary. When the value these variables assume in any

given condition of the substance is known, we are said to have a

complete knowledge of the state of the system. These variable

properties are not necessarily independent of one another. We
have just seen, for instance, that if two of the three variables

defining the state of a perfect gas are known, the third variable

can be determined from the equation

pv = BO,

where It is a constant. In such a case as this, the third

variable is said to be a dependent variable, the other two, in-

>/i']>,')ident variables. When the state of any material system
c<tn be defined in terms of n independent variables, the system

iid to possess n degrees of freedom, and the n independent

rariables are called generalised coordinates. For the system

just considered n = 2, and the system possesses two degrees of

freedom.

Again, in order that we may possess a knowledge of some
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systems, say gaseous nitrogen peroxide, not only must the vari-

ables given by the gas equation

<f>(p, v, 0)
=

be known, but also the mass of the N
2 4 and of the N0

2 present.

If these masses be respectively ra
1
and m.2 ,

there are five variables

to be considered, namely,

<k(p, v, 0, mlt
m.

2 )
= 0,

but these are not all independent. The pressure, for instance, may
be fixed by assigning values to v, 0, mlt

m
2 ; p is thus a dependent

variable, v, 0, ml}
m

2
are independent variables. Thus

p =
f(v, 6, mlt

m
z).

We know that the dissociation of N.2 into %N0.2 depends on the

volume, temperature and amount of N0
2 present in the system

under consideration. At ordinary temperatures
m

i
=

/l('
U m

'2)>

and the number of independent variables is reduced to three. In

this case the system is said to possess three degrees of freedom.*

At temperatures over 135 138 the system contains N0.
2 alone,

and behaves as a perfect gas with two degrees of freedom.

In general, if a system contains m dependent and n independent

variables, say
x

lt
x.

2 ,
x

s ,
. . . xn + m

variables, the state of the system can be determined by m + n

equations. As in the familiar condition for the solution of simul-

taneous equations in algebra, n independent equations are required

for finding the value of n unknown quantities. But the state of

the system is defined by the m dependent variables ;
the remaining

n independent variables can therefore be determined from n inde-

pendent equations.

Let a given system with n degrees of freedom be subject to

external forces

**! -^2> ^8 ' ' ' ^*
so that no energy enters or leaves the system except in the form

of heat or work, and such that the n independent variables are

displaced by amounts

dx, dx
lt

dx.
2 ,

. . . dx n .

Since the amount of work done on or by a system is measured by

the product of the force and the displacement (page 182), these

* If a system contains more than three degrees of freedom its state cannot be

represented on a single diagram.
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external forces X-^X^ . . . perform a quantity of work dW which

depends on the nature of the transformation. Hence
dW = X^ + X>

2dx., + . . . Xndxn

where the coefficients Xlt
X

2 ,
Xs . . . are called the generalised

forces acting on the system. Duhem in his great work, Traite

Elementaire de Mecanique Chimique fondee sur la Thermo -

dynamique, 4 vols., 1897-99, makes considerable use of generalised

forces and generalised coordinates.
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CHAPTEE III.

FUNCTIONS WITH SINGULAR PROPERTIES.

52. Continuous and Discontinuous Functions.

"Although a physical law may never admit of a perfectly abrupt

change, there is no limit to the approach which it may make
to abruptness." W. STANLEY JEVONS.

THE law of continuity affirms that no change can take place

abruptly. The conception involved will have been familiar to the

reader from the second section of this work. It was there

shown that the amount of substance (x) formed in a given time

becomes smaller as the interval of time (t) during which the

change occurs is diminished, until finally, when the interval of

time approaches zero, the amount of substance formed also ap-

proaches zero. In such a case x is not only a function of t, but

it is a continuous function of /
.

The course of such a reaction may be represented by the motion

of a point along the curve

*-/(*).

According to the principle of continuity, in order that the moving

point may pass from one end (a) of the curve to the other (6),

it must successively assume all values intermediate between

a and b, and never move off the curve. This is a characteristic

property of continuous functions. Several examples have been

considered in preceding chapters. Most natural processes can be

represented by continuous functions. Hence the old empiricism :

Natura non agit per saltum.

The law of continuity, though tacitly implied up to the present,

is by no means always true. Even in some of the simplest phe-

nomena exceptions may arise. In a general way, we can divide

discontinuous functions into two classes : first, those in which the

graph of the function suddenly stops to reappear in some other
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part of the plane, in other words a " break "

occurs ; second,

those in which the graph suddenly changes its direction without

exhibiting a break.* Other kinds of discontinuity may occur, but

do not commonly arise in physical work. For example, a function

is said to be discontinuous when the value of the function
//
=

/(./)

becomes infinite for some particular value of x. Such a dis-

continuity occurs when x = in the expression y = 1 x. The

differential coefficient of this expression,

dx x'2
'

is also discontinuous for x = 0. Other examples which may be

verified by the reader are log x, when x = 0, tan x, when x = TT, . . .

The graph for Boyle's equation, pv = constant, is also discontinuous

at an infinite distance along either axis.

53. Discontinuity accompanied by
" Breaks ".

The specific heat that is to say, the amount of heat required to

raise the temperature of one gram of a solid substance one degree

may be a known function of the temperature of the solid. As soon

as the substance begins to melt, it absorbs a great amount of heat

(latent heat), unaccompanied by any rise of temperature. When
the substance has assumed the fluid state of aggregation the specific

heat is again a function of the temperature until, at the boiling

point, similar pheno-
mena recur. Heat is ab-

sorbed unaccompanied

by any rise of tempera-
ture (latent heat of

vaporisation) until the

liquid is completely

vaporised.

If the quantity of --,

heat (Q) supplied be

regarded as a function

of the temperature (0), the curve (Fig. 55), represented by the

equation
y =

<f>(x) ; or, Q =

* Sometimes tlie word "break" is use<l indiscriminately for both kinds of dis-

continuity. It is, indeed, questionable if ever the "break" is real.
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is said to be discontinuous between the values Q = AB and CD,
and breaks are said to occur in these positions. f(0) is therefore

a discontinuous function, for, if a small quantity of heat be now
added to the substance, the temperature does not change in a

corresponding way.
The geometrical signification of these phenomena is as follows :

For the points A and B, corresponding to one abscissa, there are

two, generally different, tangents to the curve, namely, tan a and

tan a'. In other words (see page 82),

-j0
=

(f>'(6)
= tan a = tan angle OHA ;

and =
<'(#)

= tan a = tan angle BRA,

that is to say, a function is discontinuous when the differential

coefficient has two distinct values determined by the slope of the

tangent to each curve at the point ivhere the discontinuity occurs.

The physical meaning of the discontinuity in this example, is

that the substance may have two values for its specific heat at the

melting point, the one corresponding to the solid and the other to

the liquid state of aggregation. The tangent of the angle repre-

sented by the ratio dQ/dO obviously

represents the specific heat of the sub-

stance. An analogous set of changes
occurs at the boiling point.

Fig. 56 shows the result of plot-

ting the variations in the volume of

phosphorus with temperatures in the

neighbourhood of its melting point.

AB represents the expansion curve

0^~
"

of the solid, CD that of the liquid.
FlG - 56> A break occurs between B and C.

Phosphorus at its melting point may thus have two distinct

coefficients of expansion, the one corresponding to the solid and
the other to the liquid state of aggregation.

54. The Existence of Hydrates in Solution.

The fact (page 100) that an equation of the second (or nth)

degree may include not only a single curve of the second (or nth)

order, but also two (or n) straight lines, has been used in an in-
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genious way to indicate the probable existence of certain chemical

compounds in solution. The following data are quoted at some

length in order to explain an important application of mathematical

methods for bringing these obscured lines into prominence :

If p denotes the percentage compositions of various aqueous
solutions of ethyl alcohol and s the corresponding specific gravities

in vacua at 15 (sp. gr. H2
at 15 = 9991-6), we have the follow-

ing table compiled by Mendel6eff :

P
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sociation temperature. If the dissolved substance really enters

into combination with the solvent to form different compounds

according to the nature of the solution, many of the physical

properties of the solution (density, thermal conductivity and such

like) will naturally depend on the amount and nature of these

compounds, because chemical combination is usually accompanied

by volume, density, thermal and other changes. Assuming that

the amount of such a definite compound is proportional to the

concentration of the solution, the Tate of change of, say, the

density with change of concentration will be a linear function

of p, that is to say, from the differentiation of (1)

ds

%-* + **, <
2>

W7here ds is the difference in the density of two experimental
values corresponding to the difference in the percentage com-

position of two solutions of the same substance.*

The second member of (2) corresponds with the equation of a

straight line (page 69). On treating the experimental data by
this method, Mendeleeff f found that dsjdp was discontinuous, and

. ___ that breaks
,0 l!2H 2 0| , . . ,

were obtained

by plotting dsfdp
as ordi nates

against abscissa

p for concen-

trations corres-

ponding to 17 '56,
FIG. 58 (after Mendeleeff). Q.QQ and 88'46

per cent, of ethyl alcohol. These concentrations coincide with

chemical compounds having the composition C.,HbOH . 12H.,0,

C.2Hb
OH . 3H.2 and SC^H^OH . H

2
as shown in Fig. 58.

This procedure has been extensively used by Pickering |
in the

treatment of an elaborate and painstaking series of determinations

of the physical properties of solutions.

Crompton found that if the electrical conductivity of a solution

* See page 247 for the method of finding dyjdx from a set of tabulated measure-

ments.

, f Mendeleeff, Journal oft/ie London Chemical Society, 51, .778, 1887.

J Pickering, Journal London Chemical Society and Philosophical Magazine, about

1890. Crompton, Journal Chemical Society, 53, 116, 1888.
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is regarded as a function of its percentage composition, such that

K = a f bp + cp- + fp\ ... (3)

the rirst differential coefficient gives a parabolic curve of the type
of (1) above, while the second differential coefficient, instead of

being a continuous function of p,

was found to consist of a series of straight lines, the position of the

breaks being identical with those obtained by Mendeleeff for the

first differential coefficient ds/dp. The values of the constants A
and B are obvious.

The mathematical argument is that the differential coefficient

of a continuous curve will differentiate into a straight line or

another continuous curve
;
while if a curve is really discontinuous,

or made up of a number of different curves, it will yield a series of

straight lines. Each line represents the rate of change of the

particular physical property under investigation with the amount

of hypothetical unstable compound existing in solution at that

concentration. An abrupt change in the direction of the curve

leads to a breaking up of the first differential coefficient of that

curve into two curves which do not meet. For the p, s-curve,

dsjdp is discontinuous
;

for the ds/dp, p-curve, d-s, dp'
2 is dis-

continuous.

It must be pointed out that the differentiation of experimental
results very often furnishes quantities of the same order of

magnitude as the experimental errors themselves.* This is a

very serious objection. Pickering has proposed to eliminate the

experimental errors to some extent by differentiating the results

obtained by "smoothing" the curve obtained by plotting the

experimental results.f On the face of it this "smoothing"* of

* This will appear after reading Chapter V., 104.

fSee Horstmann (Liebig's Annalen, Suppl., 8, 125, 1872) for finding dpfilQ by

drawing tangents to the graph of the experimental data; and Berichte, 2, 137, 1869,

for finding ftp/dd by the differentiation of an empirical equation. See 104.

^ The results of the observation of a series of corresponding changes in two

variables are plotted as abscissae and ordinates by light dots on a sheet of squared

paper, and a curve is drawn to pass as nearly as possible through all these points.

The resulting curve is assumed to be a graphic representation of the general formula

(known or unknown) connecting the results of experiment. Points deviating from the

curve are assumed to be due to errors of observation. As a general rule the curve

with the least curvature is chosen to pass through or within a short distance of the
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experimental results is a dangerous operation even in the hands of

the most experienced workers. Indeed, it is supposed that that

prince of experimenters, Eegnault, overlooked an important pheno-
menon in applying this very smoothing process to his observations

on the vapour pressure of saturated steam. Eegnault supposed
that the curve showed no singular poinfc when water passed from

the liquid to the solid state at 0. It was reserved for J. Thomson
to prove that the ice-steam curve is really different from the water-

steam curve (see page 127).

55. Discontinuity accompanied by Change of Direction.

The vapour pressure of a solid increases continuously with

rising temperature, until at its melting point the vapour pressure

suddenly changes. This is shown graphically in Fig. 59. The

point P marks the melting point of the substance. The curve

does not exhibit a break because the vapour

pressure is the same at this point whether

the substance be solid or liquid.

It is, however, quite clear that the tan-

gents of the two curves differ from each

other at the transition point P, because

... .. _ ; , dv dp
tjp~ ,R' tana =/(0) = ^ and, tan a'= /(0)

=
jy

FlG - 59. if the equations to the two curves were

ax + by = 1 and bx + ay = l, the roots of the equations x = I/(a + b)

and y = l/(a + b) would represent the coordinates of the point of

intersection (see page 73).

To illustrate this kind of discontinuity we shall examine the

following phenomena :

(1) Critical temperature. Cailletet and Collardeau have an

ingenious method for finding the critical temperature of a

substance without seeing the liquid.* By plotting temperatures

greatest number of dots, so that an equal number of these dots (representing ex-

perimental observations) lies on each side of the curve. Such a curve is said to be a

smoothed curve. The choice of the proper curve is more or less arbitrary. Pickering

used a bent spring or steel lath held near its ends. Such a lath is shown in statical

works to give a line of constant curvature. E.g., Minchin's A Treatise on Stotics, 2,

306, 1886.

* Cailletet and Collardeau, Ann. (U'Vhini. et de Phys. [6], 25, 522, 1891. Note

that the critical temperature is the temperature above which a substance cannot exist

other than in the gaseous state.
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FIG. 60.

ibscissae against the vapour pressures of different weights of

the same substance heated at constant volume, a series <.t curves

are obtained which are coincident as lon.n as part of the substance

is liquid, for
" the pressure exerted by a

saturated vapour depends on temperature

only and is independent of the quantity of

liquid with which it is in contact ". Above

the critical temperature the different masses

of the substance occupying the same vol-

ume give different pressures. From this

point upwards the pressure-temperature

curves are no longer superposable. A
series of curves are thus obtained which

coincide at a certain point P (Fig. 60), the abscissa of which

denotes the critical temperature. As before, the tangent of each

curve Pa, Pb ... is different from that of OP.

(2) Coexistence of the different states of aggregation.
Another example which is also a good illustration of the beauty
and comprehensive nature of the graphic method of representing

natural processes may be given here.

(a) When water, partly liquid, partly vapour, is enclosed in a

vessel, the relation between the pressure and the temperature can

be represented by a curve PQ (Fig. 61),

which gives the pressure corresponding
to any given temperature when the liquid

and vapour are in contact and in equi-

librium. This curve is called the steam

line.

(b) In the same way if the enclosure

were filled with solid (ice) and liquid

water the pressure of the mixture would ot

be completely determined by the tern- FIG. 61. Triple Point,

perature. The relation between pressure and temperature is

represented by the curve NP, called the ice line.

(c) Ice may be in stable equilibrium with its vapour, and we
can plot the variation of the vapour pressure of ice with its tem-

perature. The curve PM so obtained represents the variation of

the vapour pressure of ice with temperature. It is called the hoar

frost line.

The plane of the paper is thus divided into three parts bounded
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by the three curves PM, PN, PQ. If a point falls within one of

these three parts of the plane, it represents some state in which

the water may exist in the form of ice, liquid or steam as the case

might be.* If the point falls on a boundary line it corresponds to

the coexistence of two states of aggregation. Finally, at the point

P, and only at this point, the three states of aggregation, ice, water

and steam may coexist together. This point is called the triple

point. For water the coordinates of the triple point are

p = 4-57 mm., 6 = 0-00747 C.

The two formulae,

dQ = Od^; (*Qftv)e
=

OQpftB).,

were discussed in one of the examples appended to 26. Divide

the former .by dv and substitute the result in the latter. We thus

obtain,

which states that the change of entropy (</>) per unit change of

volume (v), at constant temperature (0 absolute), is equal to the

change of pressure per unit change of temperature at constant

volume.

If a small amount of heat (dQ) be added to a substance existing

partly in one state, 1, and partly in another state, 2, a proportional

quantity (dm) of the mass changes its state, such that

dQ = Ludm t

where Z/
12

is a constant representing the latent heat of the change
from state 1 to state 2. By definition of entropy (</>),

dQ =
Od<f> ;

hence d$ =
-^dm . . (2)

If v
lt

v
2
be the specific volumes of the substance in the first

and second states respectively

dv =
v^drn

- v^dm =
(v2

-
v-^dm.

From (2) and (1)

\ A* . (*P\ _
Lu ,ox

)o~ O^-v,)' \DO) 9 0(v,
-

v,)'

This last equation tells us at once how a change of pressure

will change the temperature at which two states of a substance

can coexist provided that we know vv v.
2 ,

6 and L
12

.

* Certain unstable conditions (metastable states) are known in which a liquid may
be found in the solid region. A supercooled liquid, for instance, may continue the QP
curve along to S' instead of changing its direction along PM.
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:PLES. (1) If the specific volume of ice is 1-087, and that of water

unity, find the lowering of the freezing point of water when the pressure

increases one atmosphere (latent heat of ice = HO cal.). Here ra
-

r,
= 0-87,

= 273, dp = 7G cm. mercury. The specific gravity of mercury is 13'5, and

the weight of a column of mercury of one square cm. cross section is

76 x 13-5 = 1,033 grams. Hence dp = 1,033 grams, L 12
= 80 cal. = 80 x 47,600

( '.<,.S. or dynamical units. From (3), do = 0-0072 C. per atmosphere.
or naphthalene 6 = 352-2, i:2

- v
l
= 0-146; Ln - 35-46 cal. Find

the change of melting point per atmosphere increase of pressure. dB = 0*035.

Let L10 ,
L23 ,

L
ai

be the latent heats of conversion of a substance

from states 1 to 2, 2 to 3, 3 to 1 respectively ;
r

lf
v
2 , vz the re-

spective volumes of the substance in states 1, 2, 3 respectively ;

let denote the absolute temperature at the triple point. Then

dp.JO is the slope of the tangent to these curves at the triple

point, and

The specific volumes and the latent heats are generally quite

different for the three changes of state, and therefore the slopes of

the three curves at the triple point are also different.

The difference in the slopes of the tangents of the solid-vapour

(hoar frost line) and liquid-vapour (steam line) curves of water

(Fig. 59) is

-i *8
-

At the triple point L 13
= L

V2 + L.2Z ,
and (r3

-
i^)

=
(v.2

- r
t )
+ (r3

-
r._,).

EXAMPLE. As a general rule, the change of volume on melting, (ra
-

t^),

is very small compared with the change in volume on evaporation, (r.
- r2),

or sublimation, (r,
- v^ ;

hence r.,
-

i\ may be neglected in comparison with

the other volume changes. Then,

/p\ _ (dp\
L

\-deJ 15 \-d9jn
~

e(r,- r,)'

Hence calculate the difference in the slope of the hoar frost and steam lines

for water at the triple point. Latent heat of water = 80 ;
I/ 12

= 80 x 42,700 ;

B = 273, ?-, - r.2
= 209,400 c.c. Substitute these values on the right-hand side

of the last equation. Ansr. -059.

The above deductions have been tested experimentally in the

case of water, sulphur and phosphorus; the results are in close

agreement with theory. A full discussion of the properties of

sulphur, water and phosphorus, etc., in relation to the triple point,

are given by Duhem in his Traite Elementaire de Me'caniqm
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Chimique fondee sur la Thermodynamique, 2, 93 ;
an outline

sketch will also be found in Preston's Theory of Heat (1894),

pp. 677-8.

(3) Cooling curves. If the temperature of cooling of pure

liquid bismuth be plotted against time, the resulting curve will

be continuous (ab, Fig. 62), but the moment a part of the metal

solidifies, the curve will take another direction be, and continue

so until all the metal is solidified,

when the direction of the curve

again changes, and then continues

quite regular along cd. For bis-

muth the point b is at 268.

If the cooling curve of an alloy

of bismuth, lead and tin (Bi, 21
;

Pb, 5*5
; Sn, 75*5) is similarly plot-

ted, the first change of direction is

observed at 175, when solid bis-

muth is deposited; at 125 the curve

again changes its direction, with a
FIG. 62. Cooling Curves.

simultaneous deposition of solid bismuth and tin
;
and finally at

96 another change occurs corresponding to the solidification of

the eutectic alloy of these three metals.

These cooling curves are of great importance in investigations
on the constitution of metals and alloys. The cooling curve of

iron from a white heat is particularly interesting, and has given
rise to much discussion. The

curve shows changes of direction

at about 1,130, at about 850

(called Ar% critical point), at

about 770 (called Ar.
2

critical

point), at about 500 (called the

At\ critical point), at about 450

500 C., and at about 400 C.

(below redness). The magnitude
*?* of these changes varies according

FIG. "63. Portion of Cooling Curve of to the purity of the iron. Some
Iron - are very marked even with the

purest iron. This sudden evolution of heat (recalescence) at

different points of the cooling curve has led many to believe

that iron exists in some allotropic state in the neighbourhood of
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these temperatures.* Fig. 63 shows part of a cooling curve of

iron in the most interesting region, namely, the Ar
z
and Ar

2

critical points.

56. Maximum and Minimum Values of a Function.

If a mixture of hydrogen and chlorine gases is exposed to a

ray of light, the amount of chemical action which takes place in

a given time depends on the wave length of the light, that is to

say, if y denotes the amount of hydrogen chloride formed in unit

time, and x the wave length of light, y =
f(x). Experiment shows

that as x changes from one value to another, y changes in such a

way that it is sometimes increasing and sometimes decreasing.

In consequence, there must be certain values of the function for

which y, which had

previously been in-

creasing, begins to

decrease, that is to

say, y is greater for

this particular value

of x than for any

adjacent value ;
in

this case y is said

to have a maxi-

mum value. Con-

versely, there must

be certain values of

f(x) for which y,

havin<* been de- Wwv ten^/iofaclinic rays referred hFrawiko^ lines.

creasing, begins to
FlG ' 64 (Diagrammatic),

increase. When the value of y, for some particular value of x, is

less than for any adjacent value of x, y is said to be a minimum
value.

Fig. 64 is a geometrical illustration of the action of light rays
of different wave length on a mixture of hydrogen and chlorine.

Imagine the variable ordinate of the curve to move perpendicularly

along Ox, gradually increasing until it arrives at the position PM,

* Roberts-Austen' s papers in the Proceedings of the Society of Mechanical En-

gineers for 1891, 543 ; 1893, 102
; 1895, 238

; 1897, 31
; 1899, 35, may be consulted for

fuller details.

I
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and afterwards gradually decreasing. The ordinate at PM is said

to have a maximum value. The decreasing ordinate, continuing its

motion, arrives at the position QN, and after that gradually in-

creases. In this case the ordinate at QN is said to have a minimum
value.

The terms " maximum "
and "minimum" do not necessarily

denote the greatest and least possible values which the function

can assume, for the same function may have several maximum and

several minimum values, any particular one of which may be greater

or less than another value of the same function.

EXAMPLE. If the ?/-axis represents the amount of hydrogen chloride

formed in unit time
;
the aj-axis, the wave length of the ray of light impinging

on a mixture of hydrogen and chlorine gases, interpret the curve shown in

Fig. 64.

The mathematical form of the function employed in the above

illustration is unknown, the curve is an approximate representation

of corresponding values of the two variables determined by actual

* measurements. (Bunsen and Eoscoe, Phil. Trans., 148, 879, 1859.)

EXAMPLE. Plot the curve represented by the equation

y - since.

Give x a series of values ^ir, TT, -|TT, 2ir, and so on.

Maximum values of y occur for x = far, fir, f?r, . . .

Minimum values of y occur for x = -
^TT, f*, TT, . . .

The resulting curve is an harmonic or sine curve (see Fig. 51, page 112).

One of the most useful applications of the differential calculus is

the determination of maximum and minimum values of a function.

Many of the following examples can be solved by special algebraic

or geometric devices. The calculus, however, offers a sure and

easy method for the solution of these problems.

57. How to find Maximum and Minimum Values of a

Function.

Let us trace the different values which the tangent to the

curve shown in Fig. 65 may assume. Firstly, when x is increasing,

y is approaching a maximum value and the tangent to the curve

makes an acute angle with the a?-axis. In this case, Table XII I.,

dy .

tan a and . . T- is positive ;
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at P the tangent is parallel to the rr-axis, that is to say,

dy
tan a and also , are zero . . (1)ax

Secondly, immediately after passing P, the tangent to the curve

makes an obtuse angle with the #-axis, that is- to say,

dy
tan a and -, are negative . . (2)

Finally, as the tangent to the curve approaches the minimum value

QN, dy/dx remains negative ;
at Q the tangent is again parallel to

ic-axis, an<P

dy
tan a, as well as -,- ,

is zero. . (3)

After passing Q, dy/dx again becomes positive.

There are some curves which have maximum and minimum

values very much resembling P and Q' (Fig. 66). These curves

are said to have cusps at P' and Q'.

u '

FIG. 65. Maximum and Minimum.

M'

FIG. 66. Maximum and
Minimum Cusps.

It will be here observed that x increases and y approaches a

maximum value while the tangent P'M' makes an acute angle with

the x-axis, that is to say, dy/dx is positive. At P' the tangent

becomes perpendicular to the x-axis, and in consequence the ratio

dy/dx becomes infinite. After passing P', dy/dx is negative. In

the same way it can be shown that as the tangent approaches Q'N',

dy/dx is negative, at Q', dy/dx becomes infinite, and after passing

Q', dy/dx is positive.

We thus deduce the following rules :

(1) When the first differential coefficient changes its sign from a

positive to a negative value the function has a maximum value, and

when the first differential coefficient changes its sign from a negative

to a positive value the function has a minimum value.
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(2) Since a function can only change its sign by becoming zero

or infinity, it is necessary for the first differential coefficient of the

function to assume either of these values in order that it may have

a maximum or a minimum value.

(3) In order to find all the values of x for which y possesses a

maximum or a minimum value, the first differential coefficient must

be equated to zero or infinity and the value of x which satisfies these

conditions determined.

EXAMPLES. (1) Consider the equation y = x2 -
8x,

' '

dx

Equating the first differential coefficient to zero, we have

2x - 8 =
;
or x = 4.

Add + 1 to this root and substitute for x in the original equation,

when x = 3,y= 9 - 24 = - 15
;

x = 4, y = 16 - 32 = - 16 ;

x = 5, y = 25 - 40 = -' 15.

y is therefore a minimum when x = 4, since a slightly greater or a slightly

less value of x makes y assume a greater value. If the values of y had been

less for x = 3 and x 5, than for x = 4, then, x = 4 would have made y a

maximum. If one had been greater, and the other less than for x - 4, this

root would have been neither a maximum nor a minimum.
The addition of + 1 to the root gives only a first approximation, as will

be shown later on (page 392). The minimum value of the function might, for

all we can tell to the contrary, lie between 3 and 4 or 4 and 5. The approxi-

mation may be carried as close as we please by using less and less numerical

values in the above substitution. Suppose we substitute in place of + 1, + 8x,

then
when x = 4 -

Sx, y = 8x2 - 16 ;

x = 4 ,y= - 16
;

x = 4 + 8x, y = 8;r
2 - 16.

Therefore, however small 8x may be, the corresponding value of y is greater

than - 16. That is to say, x = 4 makes the function a minimum.

(2) Show that y = 1 + 8x - 2x2
,
has a maximum value for x = 2.

58. Points of Inflection.

Continuing the discussion in the preceding paragraph, to equate

dy dy
ax ax

is not a sufficient condition to establish the existence of maximum
and minimum values of a function, although it is a rough practical

test. Some of the values thus obtained do not necessarily make

the function a maximum or a minimum, since a variable may
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become zero or infinite without changing its sign. This is obvious

from a simple inspection of Fig. 67, where
(

'- f = 0, or oo, resp.,dx

for the points R and S. Yet neither maximum nor minimum values

of the function exist. A further test is therefore required in order

to decide whether individual values of x correspond to maximum or

minimum values of the function. This is all the more essential in

practical work where the function, not the curve, is to be operated

upon.

r

FIG. 67. Points of Inflection. FIG. 68. Concavity and Convexity.

By reference to Figs. 67 and 68 it will be noticed that the

tangent crosses the curve at the points R and S. Such a point is

called a point of inflection. The point of inflection (or inflexion)

marks the spot where the curve passes from a convex to a con-

cave, or from a concave to a convex configuration with regard to

one of the coordinate axes. The terms concave and convex have

here their ordinary meaning.

59. How to find whether a Curve is Concave or Convex

with respect to the x-Axis.

Referring to Fig. 68, along the convex part from A to B, the

numerical value of tan a, regularly decreases to zero. At B the

lowest point of the curve tan a =
;
from this point to E the

tangent to the angle continually increases, for tan a has now an

increasing positive value.

The differential coefficient of tana with respect to x for the

convex curve ABU is

</(tana) _ dfy

dx. ~^>U ' (1)



134 HIGHER MATHEMATICS. 60.

because, if a function, y =
f(x), increases with increasing values of

x, dy/dx is positive ; while if the function, y =
f(x), decreases with

increasing values of x, dy/dx is negative. Along the concave part

of the curve RCS, tan a regularly decreases in value
; from R to C,

tan a has a decreasing positive value. At the point C, tan a = 0,

and from C to S, tan a has a continually increasing negative

value.

The differential coefficient of tan a with respect to the concave

curve RCS is

_
dx Sx*

<{)'

Hence a curve is concave or convex with respect to the upper side

of the x-axis, according as the second differential coefficient is

-positive or negative.

I have assumed that the curve is on the positive side of the r-axis
;
when

the curve lies on the negative side, assume the x-axis to be displaced parallel

with itself until the above condition is attained. A more general rule, which

evades the above limitation, is proved in the regular text-books. The proof is

of little importance for our purpose. The rule is to the effect that " a curve is

concave or convex with respect to the ic-axis according as the product of the

ordinate of the curve and the second differential coefficient, i.e., according
dz
y

as 2/3~2
'

1S positive or negative ".

EXAMPLES. (1) Show that the curves y = log a; and y = xlogx are re-

spectively concave and convex towards the .r-axis.

(2) Show that the parabola is concave upwards below the x--axis (where y

is negative) and convex upwards above the #-axis.

60. How to find Points of Inflection.

From the above principles of curvature and points of inflection,

it is clearly necessary, in order to locate a point of inflection, to

find a value of x, for which tan a assumes a maximum or a minimum
value. But

dy
tana = j-,ax

' '

Hence the rule : In order to find a point of inflection at which

the second differential coefficient changes sign, we must equate the

second differential coefficient of the function to zero and find the

value of x satisfying these conditions.

-
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EXAMPLES. (1) Show that the curve

y = a + (x
-

6)
3

has a point of inflection at the point y = a, x b. Differentiating twice we

get cPyjdx* = 6(x
-

b). Equating this to zero we get x = b, and hence sub-

stituting in the original equation y = a. When x < b the second differential

coefficient is negative, when x > 6 the second differential coefficient is posi-

tive. Hence there is an inflection at the point (b, a).

(2) For the special case of the harmonic curve

dhj
y = Bmx,fap

= - sinx= -
y,

that is to say, at the point of inflection the ordinate y changes sign. This

occurs when the curve crosses the it-axis, and there are an infinite number of

points of inflection for which y = 0.

(3) Show that the probability curve, y = ke h
***, has a point of inflection

61. Multiple Points.

A multiple point is one through which two or more branches of a curve

meet or intersect. There are two species :

(1) Two or more branches of the curve intersect.

(2) Two or more branches of the curve meet but do not intersect (point of

osculation).

An algebraic equation of the nth degree has n roots corresponding to the

different values of one of the variables. When two or more branches of a

curve touch each other, the different values of y, corresponding to .r, become

equal to each other, while for slightly less values of x, the corresponding values

of y are not equal.

First species of multiple point. If the first differential coefficient has two

or more real values, the curve has more than one tangent, that is to say, the

curves intersect. The number of intersecting branches is denoted by the

number of real roots of the first differential coefficient.

EXAMPLE. In the lemniscate curve, familiar to students of crystallography,

y* = a*x2 - x4
; y = x \/a2 - x2.

Here y has two values of opposite sign for every value of x between + a
; the

curve is therefore symmetrical with respect to the avaxis. When .r = + a,

these two values of y become zero ; but these are not multiple points since

the curve does not extend beyond these limits, and therefore cannot satisfy

the above conditions. When x = the two values of y become zero, and

since there are two values of y one on each side of the point x = 0, y = 0, this

is a multiple point. Since

_
dx~~ v/a2 - x*

becomes + a when x 0, it follows that there are two tangents to the curve

at this point, such that

tan a = + a.

Fig. 69 shows* this curve.
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Second species of multiple point point of osculation. If the first differ-

ential coefficient of a multiple point has two or more real and equal roots,

the different,branches of the curve have a common tangent, and the point of

contact is called a point of osculation.

FIG. 69. Multiple Point (O).

FIGL 70. Point of Osculation (P).

EXAMPLE. In the curve y - (x
-

1) (x
-

2) (x
-

3), for values of x other

than and - 1 there are at least two values of y ; dyjdx = 3x2 - 12x + 11

vanishes when x = 2 + 1/*J3; hence the two branches of the curve are

tangents to each other at this point, which is therefore a point of osculation.

The curve is shown in Fig. 70.

62. Cusps.

A cusp is a point where two branches of a curve have a common tangent
and stop at that point, There are two species :

(1) The two branches lie on opposite sides of the common tangent.

(2) The two branches lie on the same side of the common tangent.

The cusp is therefore a special case of the point of osculation, where the

branches terminate at the point of contact instead of passing beyond. Hence

the values of y on one side of the point are real and on the other, imaginary.*
To distinguish cusps from points of osculation : compare the ordinate of

the curve for that point with the ordinates of the curve on each side. For a

cusp, y and the first differential coefficient have only one real value.

First, cusps of the first species (or
" keratoid cusps ") have two values for

the second differential coefficient differing only in sign. The meaning of this

will be clear from pages 133 to 134.

EXAMPLE. In the cissoid curve, y = b + v (x
2 - a2

)

3

, y is imaginary for

all values of x between + a. When x = a, y has one value
;
for any point to

right of x=+a or to the left of x= -
a, y has two values dyjdx= Sx(x

2 -
a?)

vanishes when x = a. The two branches of the curve have therefore a com-

mon tangent parallel to the x-axis and there is a cusp. Next determine

d?yldx* = f(x*
- a2

)

~
*

* For imaginary quantities read footnote, page 175.
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and substitute some value for a, say a + h. We then find that the cusp is

of the first species with the upper branch + f(2ah + /t
8
)

~

, convex towards

the x-axis
;
and the lower branch -

$(2a/t -f hz
)

~

, concave towards the x-axis.

The curve is shown in Fig. 71.

Second, cusps of the second species (or "rhamphoid cusps") have two
different values for the second differential coefficient of the same sign.

FIG. 71. Cusps of the First Species. FIG. 72. Cusp of the
Second Species.

EXAMPLE Show that the curve (y
- a;

2
)

2 = x5 has a cusp of the second

species at the origin. The lower curve also has a maximum when x = .

The general form of the curve is that shown in Fig. 72.

It will perhaps amuse the reader to investigate the properties of the

following curves :

r = a sin 26 ;
r = a sin 66 ;

r3 = 3 cos 4
f6 ;

r* = a5 cos 5
f0.

63. Conjugate or Isolated Point.

A conjugate point, or acnode, is one whose coordinates satisfy the equation
to the curve, and yet is itself detached from the curve.

If a point is isolated from every part of the curve, it follows that on each

side of this point real values of one coordinate must give a pair of imaginary
values of the other. This may be determined by successive substitution of

x + Sx, x -
5x, etc.

EXAMPLE. Show that the origin in the graph of ay
z = x2

(x
-

b) is a

conjugate point.

When one branch of a curve suddenly stops we have a point d'arret or

terminal point (see Fig. 120).

EXAMPLE. The origin in the two transcendental curves y = a1
/*, where

a is greater than unity and y = x log a.

64. Asymptotes.

As explained on page 87, an asymptote is a straight line which approaches

closer and closer to a given curve, as x or y increases without limit. It is often

defined as the limiting position of a tangent to a curve when the point of

contact moves an infinite distance away (see the lines OP, OF, Fig. 28; Oc,

Fig. 29
; Op, Fig. 125, etc.).
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Let OPS (Fig. 73) be a plane curve, BP a tangent to the curve at the

point P(xl , T/J).
If BP intersects the ^/-axis at the point (0, y), and the cc-axis

at the point (x, 0), then (6), 38,

y -
1/1
=
fo&

-
*i)-

If, we put y - 0, the intercept of the tangent with the cc-axis is

x = OB = x,
-

7/1^,
(2)

and if x = we get the intercept of the tangent with the ?/-axis,
T

If, when x
l
or yl

becomes infinite, either x or y is finite, the curve will have

one or more asymptotes which can be de-

termined. The following deductions may
be made :

(1) If when x = oo, y is finite, the

asymptote is parallel to the ic-axis.

(2) If when x is finite, y = CD, the

asymptote is parallel to the 7/-axis.

(3) If x and y are both finite, the

asymptote passes through (0, y) and (x, 0).

(4) If x and y are both zero, the asymp-
FIG. 73. ^Q^e passes through the origin, and its

direction is determined by the value of yjx when x or y is infinite.

(5) If x and y are both infinite, the tangent is at an infinite distance from

the origin, and cannot be constructed since it is indeterminate.

EXAMPLES. (1) Determine whether the hyperbola has asymptotes. The

hyperbola

has two real values of y, however great x may be, and hence the curve has two

infinite branches to the right. Differentiating the above equation
dx _ a2

y
2

__
x2 - a2

y
dy

~
b2

'

x~
~

x

a2 b2

if x is infinite, OB = a'2/^ =
;
and if y is infinite O(0, y) = - b2^ = 0,

that is to say, the hyperbola has two asymptotes passing through the origin as

(4) above. The direction of- the asymptotes is obtained by putting

dy b*x
__

bx

dx~ a?y
~

a~J(x
2 - a2

)'

when x= + oo, dy/dx = + bja. Hence the asymptotes are the produced diagonals
of a rectangle described on the axes. If x -

oo, there is another pair of

infinite branches having the same lines through the origin as asymptotes.

(2) Has the parabola y
2 ax an asymptote ? No. 0(x, 0)

= -
x,

O(0, y)
=

%y. When x is infinite, O(x, 0)
= -

CD, and when y is infinite

0(0, y)
= + oo. Hence the parabola has no asymptotes as in (5) above.

(3) Show that the logarithmic curve x = log y (and also y = ex
)
has an

asymptote coincident with the abscissa axis, and a branch of the curve ex-

tending to the right, not asymptotic (case (5) above).
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65. Summary.

(1) Equating the first differential coefficient of a function to zero gives a

dy
maximum 01minimum value. If the sign of ^ changes from + to -- when x is

substituted, ij
is a maximum ;

if the sign changes from - to + , y is a minimum
;

<l-i/

also, if
^.2 is positive, y is a maximum, if negative, a minimum (see 102).

d?t(

(2) If V-TJ is positive, the curve is concave towards the x'-axis, if negative
VI rtlt/

OOfKMe.

(3) If ~T 0, but does not change sign when x is substituted, we have a

d?t/

[>oint of inflection for which -r-^
= 0.

di/

(4) If -T- = oo and changes its sign, there is a cusp, which is a maximum or

a minimum according to its sign.

(5) If
-^7

= oo and y = oo without changing sign, y is an asymptote.

(6) If = and 1J = with a change of sign, y has an infinite maxi-

mum value.

(7) If V~ has two or more unequal values, a multiple point occurs.

(8) If 3^7 has two or more equal values, a point of osculation occurs.

(9) If -5- and y have one real value, and the value of y on one side of the

d?y
point is imaginary, we have a cusp : of 1st species, if

^-3
has two values, differing

only in sign ; of 2nd species, if -,r
.2 has two different values, of the same sign.

(10) If ^ and hig

have a conjugate point.

(10) If and higher differential coefficients have impossible values, we

66. Curvature.

The curvature at any point of a plane curve is the rate at

which the curve is bending. Of two curves AC, AD, that has

the greater curvature which departs the __^A _
more rapidly from its tangent AB (Fig. ^^^
74). The angle between the tangents at

'
( ^D

the ends of an arc of the curve is called FlG - 74 -

the total curvature of the arc. In passing from any point P
(Fig. 75) to another neighbouring point P

l along any arc 8s of

the plane curve AB, the tangent at P turns through the angle oa
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where a is the angle made by the intersection of the tangent at P
with the #-axis. The angle 8a is the total curvature of the arc

under consideration, and the ratio

(total curvature) So.

(length of arc)

=
Ss

=
(
mean cu ature of arc).

The curve turns through the angle Sa in the
lengthJSs, and therefore

the total curvature is the limiting value of

Lt&a/Ss = da/ds =
(rate of bending of curve) . (I)

The curvature of the circumference of all circles of equal radius

is the same at all points, and varies inversely as the radius. This

is established in the following way : In the circle (Fig. 76), is

the centre, r, r are radii. From elementary geometry, the angle

FIG. 75. FIG. 76.

RSQ = angle POQ. The angle POQ is measured in circular

measure (page 494) by the ratio of the arc PQ to the radius, i.e.,

angle POQ = arc PQ/r, or Sa/Ss = 1/r,

da 1
/. (curvature of circle)

= -r- = - -
. (2)as *

This is Newton's definition of curvature.

Just as a straight line touching a curve, may be regarded as

a line drawn through two points of the curve infinitely close to

each other (definition of tangent), so a circle in contact with a

curve may be considered to pass through three consecutive points

of the curve infinitely near each other. Such a circle is called an

osculatory circle or a circle of curvature. The osculatory circle

of a curve has the same curvature as the curve itself at the point

of contact. The curvature of different parts of a curve may be

compared by drawing osculatory circles through these points. If
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r be the radius of an oscillatory circle at P (Fig. 77) and r
l
that at

Pn then
1 l

curvature at P : curvature at P
l
= -

:
-

. (3)

In other words, the curvature at any two points on a curve varies

ini-fTsely as the radius of the

osculatory circles at these points.

The radius of the osculatory

circle at different points of a

curve is called the radius of cur-

vature at that point. The centre

of the osculatory circle is the

centre of curvature. FIG- 77.

To find the radius of curvature of a curve. Let the coordinates

of the centre of the circle be a and b, R the radius, then the

equation of the circle is (page 76)

(x
-

a)* + (y
- bY = B2

. x (4)

Differentiating this equation and dividing by 2,
f

"

dx 'u^'iu\>
Again differentiating,

i -L. / _ h\
d'y

, /^\2 _ n

Let u = dy/dx and v = d'2yjdx
2

,
for the sake of ease in manipulation,

then (6) becomes

y - b = -^ . (7)

Substituting this value of y - b in (5),

1 + u
a; -

w, v, x and ?/ at any point of the curve are the same for the

osculating circle at that point, and therefore a, b* and r can be

determined from x, y, u, v. Substituting (7) and (8) in (4),

R
* The determination of a and b is of little use in practical work. They give

equations to the evolute of the curve under consideration. The evolute is the curve

drawn through the centres of the osculatory circles at every part of the curve, the

curve itself is called the involute. Example : the osculatory circle has the equation

(x - a
)
z + (y

-
b)

z = R. a and b may be determined from equations (4), (7) and (8).

The evolute of the parabola y
2 = mx is 62 = (^a ~ lflP-
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which is the standard equation. From (1),

1 da d*yl(, (dy\*Y (-, /%\2P7<%
B
-

ds
-
a*/!

1 + U) }
;
or * =

I
1 +

j/3' <10>

EXAMPLES. (1) Find the radius of curvature at any point on the ellipse

x*la* + 7/
2
/6

2 = 1.

dy = _
tto A, = _ * B = _ (ov 6V)IKM.

- da? a2
?/' dx2 a2

y*

At the point x = a, y = 0, R b2/a. Hint. The steps for d^y/dx
2 are :

_ ft
2

y - x.dyjdx _ _ fe
2 oy + 6%2

_ _ fe
2 a2^2

a2
*'

?/
2 a2 * aV

~
a?'~if'

(2) The radius of curvature of xy a, is
(a:

2 +

When the curve is but slightly inclined to the #-axis, dyldx
is practically zero, and the radius of curvature is given by the

expression

a result frequently used in physical calculations involving capil-

larity, superficial tension, theory of lenses, etc.

The direction of curvature has been discussed in 59. It -was

there shown that a curve is concave or convex at a point (x, y)

according as d2
y/dx

2 > or < 0. See also 100.

67. Envelopes.

m
The equation y = + ax,

represents a family of curves, since for each value of a we get

a distinct curve. If a varies continuously it will determine a

succession of curves, each of which is a member of the family

denoted by the above equation, a is said to be the variable

parameter of the family, since the different members of the

family are obtained by assigning arbitrary values for a. Let the

equations

yi
= + ax (i)

(3)
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be three successive members of the family. As a general rule two

distinct curves in the same family will have a point of intersection.

Let P (Fig. 78) be the point of

intersection of curves (1) and (2) ;

P
l
the point of intersection of

curves (2) and (3), then, since

P
l
and P

2
are both situated on

the curve (2), PP l
is part of the

locus of a curve whose arc PP
1

coincides with an equal part of

the curve (2).
It can be proved,

in fact, that the curve P P
l

. . .

touches the whole family of

curves represented by the original

equation. Such a curve is said to

be an envelope of the family.

To find the equation to the FlG - 78. Envelope.

envelope, bring all the terms of the original equation to one side,

m
y --- ax = 0.

Then differentiate with respect to the variable parameter, and put
m " x =

'

Eliminate a between these equations,

~ Jm.x - x = 0, or y - 2

envelope

Ti = 0.

EXAMPLES. (1) Find the envelope of the family of circles

(a-
-

a)
2 + y- = ?-

2
,

where a is the variable parameter. Differentiate with respect to a and oc - a= ;

eliminating a, we get y = + a,

which is the required envelope.

The envelope y = a represents
two straight lines parallel to the

x-axis and at a distance + a and
- a from it. Shown Fig. 79.

(2) Show that the envelope of

the family of curves (x
- m -

a)
2 +

y2 = 4ma, is a parabola y
2 = 4??w.

See 126 and 138.

+0,

envelop F

FIG. 79. Double Envelope.
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68. Six Problems in Maxima and Minima.

It is first requisite, in solving problems in maxima and minima,
to .express the relation between the variables in the form of an

algebraic equation, and then to proceed
as directed on page 130.

In the majority of cases occurring
in practice, it only requires a little

common-sense reasoning on the nature

of the problem, to determine whether a

particular value of x corresponds to a

maximum or to a minimum.

(1) Divide a line into any two parts
such that the rectangle having these two

parts as adjoining sides may have the

greatest possible area.

If a be the length of the line, x the

length of one part, a - x is the length of the other. The area of

the rectangle will be

y =
(a

-
x)x.

Differentiate and
dv
~r = a - 2x.
dx

Equate to zero, and x = ^a, that is to say, the line a must be

divided into two equal parts, and the greatest possible rectangle

is a square.

(2) Find the greatest possible rectangle that can be inscribed in

a given triangle.

In Fig. 80, let b denote the length of the base of the triangle

ABC, h its altitude, x the altitude of the inscribed rectangle. We
must first find the relation between the area of the rectangle and

of the triangle. By similar triangles, page 490,

AH : AK = BC : DE
;
h : h - x = b : DE,

but the area is obviously y = DE x KH, and

DE =
jfa

-
x), KH = x

; .-. y =
jj(hx

- x2
).

Now b/h is constant, and it is the rule, when seeking maxima and

minima, to abbreviate the process by omitting constant factors, since,

whatever makes the variable hx - x2 a maximum will also make

^(hx
- x2

)
a maximum. This is easily proved, for let

y = C/M
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where c has any arbitrary constant value. For a maximum or

minimum value

dy/dx = cf(x) = 0,

and this can onlv occur where

f(x) = 0.

Now differentiate the expression obtained above, for the area of the

rectangle, and equate the result to zero.

dy

x̂
= h - 2x =

;
or x = \h.

That is to say, the height of the rectangle must be half the altitude

of the triangle.

(3) To cut a sector from a circular sheet of metal so that the

remainder can be formed into a conical-

shaped vessel of maximum capacity.

Let ACS (Fig. 81) be a circular plate of

unit radius, it is required to cut out a portion

AOB such that the conical vessel formed

by joining OA and OB together may hold

the greatest possible amount of fluid. We
must again find a relation between the

dimensions of the plate and the volume of

the cone.

Obviously ACB will be the circumference of the circular base

of the cone. Let r denote the radius of this base, and y the

perimeter of the circular base.

y = 2irr..... (1)

If h denotes the height of the cone its volume F will be formula

(26), page 492,
F =

\Trr*h..... (2)

But h and r form a right-angled triangle with hypotenuse
OB = OA = 1,

and whose base is r.

h = v1 - r*
;
from (1) h = l - y

2
l^'\ . (3)

from (2) and (3) F = y* ^(1 -
y*/4**)ll%ir. . . (4)

The problem therefore is to find y such that F is a maximum.
As before, omitting the constant term 1/127T,

where F' x l/127r = F. Multiply through with Jl -

a*

K
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divide through by y, since y is not zero,

2 -
32/

2
/47r

2 =
;
or y = 2* ^2/3 . . (5)

But, by Euclid vi., 33,

perimeter of sector ACS : whole perimeter of the original circle

= angle x : 360.

Since the original circle had unit radius

y : 27r = x : 360.

Substituting this value of y in (5),

x = 360 x/f = 294 (approx.).

The angle of the removed sector is then about 66. The application
to the folding of filter papers is obvious.

(4) At what height should a light be placed above my writing table

in order that a small portion of the surface of the table, at a given
horizontal distance away from the foot

of the perpendicular dropped from the

light on to the table, may receive the

greatest illumination possible ?

Let 8 (Fig. 82) be the source of

illumination whose distance from the

j table x is to be determined in such a

way that B may receive the greatest

illumination. Let AB = a, and a the

angle made by the incident rays SB = r on the surface B.

It is known that the intensity of illumination varies inversely

as the square of the distance of B, and directly as the sine of the

angle of incidence.

Since r2 = a2 + x2
,
siri a = x/r = x/' J(a

2 + x2
).

In order that the illumination may be a maximum,
.-. y = x/r

2
*J(a

2 + x2
)
= x/ ^(a

1 + x2
)

must be a maximum. Hence

The interpretation is obvious.*

(5) To arrange a number of voltaic cells to furnish a maximum
current against a known external resistance.

Let the electromotive force of each cell be E, and its internal

resistance r. Let H be the external resistance, n the total number

of cells.

* Note : Negative and imaginary roots have no physical meaning in this problem.

See page 394.
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Assume that x cells are arranged in series and nix in parallel.

The electromotive force of the battery is xE. Its internal resist-

ance x2
r/n. The current C is given by

C
dC
dx

E - -x*
n

E

N

M

Equate dO/dx to zero and simplify,

.-. R = r&ln.

That is to say, the^ battery must be so arranged that its internal

resistance shall be as nearly as possible equal to the external

resistance.

(6) Snell's Law of Refraction of Light Index of Refraction.

Let SP (Fig. 83) be a ray of light incident at P on the surface

of separation of the media M and M'
;

let PB be the refracted

ray in the same plane as the incident

ray. If PN is normal (perpendicular)
to the surface of incidence, then

SPN = i is the angle of incidence,

N'PR = r the angle of refraction.

Drop perpendiculars from S and R
on to A and B, so that SA =

a,

EB = b. Now the light will travel

from S to R in the shortest possible

time, with a uniform velocity different

in the different media M and M'. At

the point P, the ray passes through
the surface separating the two media,

let AP = x, BP = p - x. Let the

velocity of propagation of the ray of light in the two media be

respectively v and v' per second. The ray therefore travels from

S to P in SP/v seconds, and from P to B in RP/v' seconds, and

the total time occupied in transit from S to R is

t = SP/v + RP/v
f.... (1)

In the triangles SAP and EBP
SP- . (2)

* This formula is identical with the one given in any text-book on electricity.

Note : C is a maximum when its reciprocal is a minimum. This and all the preceding
results should be tested for maxima and minima by means of the second differential

coefficients.

FIG. 83.
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(7) Draw an ellipse whose area for a given perimeter shall be a maximum.
Although the perimeter of an ellipse can only be represented with perfect

accuracy by an infinite series (page 188), yet for all practical purposes the

perimeter may be taken to be ir(x + y) where x and y are the major and
minor axes. The area of the ellipse is z = ir.ry. Since the perimeter is to

be constant, a = w(x + y) or y = ajir
- x. Substitute this value of y in the

former expression and z = ax - itx*. Hence, x = a/2ir when z is a maximum.
Substitute this value of x in y =

/
- x, and y =

a/2ir, that is to say,
x = y = a/2ir, or of all ellipses the circle has the greatest area.

Boys' leaden water-pipes designed not to burst at freezing temperatures,
are based on this principle. The cross section of the pipe is elliptical. If the

contained water freezes, the resulting expansion makes the tube tend to become
circular in cross section. The increased capacity allows the ice to have more
room without putting a strain on the pipe.

(8) If A, B be two sources of heat, find the position of a point O on the

line AB = a, such that it is heated the least possible. Assume that the in-

tensity of the heat rays is proportional to the square of the distance from the

source of heat. Let AO = x, BO = a - x. The intensity of each source of

heat at unit distance away is a and ft. The total intensity of the heat which
reaches O is

-
*

T
(a

- xr
Find dl/dx and dPI/dx*. This equation is a minimum when

Since AO : BO= /a: / show that when I is a minimum, its actual (numerical)
value may be found from I(min.) =

( /a + /0)
3
/a

8
. If a = /3 then # = a, and

the numerical value of I(min.) = 8o/a
2

.

(9) Rapp's equation for the specific heat of water between and 100 is

v = 1-039935 - 0-0070680 + 0-0002125502 - 0-0000015403
,

where the mean specific heat between and 100 is unity. Hence show that

there is a minimum between = 20 and 30, and a maximum about 70.
Volten's equation for the same property is

<r = 1 - 0-00146255120 + 0-000023798102 - 0-0000001071603 .

Hence show that there is a minimum between 40 and 50, and a maximum
about 100.

In the working of the above examples, it will be found simplest to use

a, 6, c ... for the numerical coefficients, differentiate, etc., for the final re-

sult, restore the numerical values of
, 6, c . . .

,
and simplify. Probably the

reader has already done this.
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CHAPTEK IV.

THE INTEGRAL CALCULUS.

The experimental verification of a theory concerning any natural

phenomenon generally rests on the result of an integration.

69. Integration.

IN the first chapter, methods were described for finding the mo-

mentary rate of progress of any uniform or continuous change in

terms of a limiting ratio, the so-called "
differential coefficient

"

between two variable magnitudes. The fundamental relation

between the variables must be accurately known before one can

form a quantitative conception of the process taking place at any
moment of time. When this relation or law is expressed in the

form of a mathematical equation, the " methods of differentiation
"

enable us to determine the character of any continuous physical

change at any instant of time. These methods have been

described.

Another problem is even more frequently presented to the

investigator. Knowing the momentary character of any natural

process, it is asked :

" What is the fundamental relation between

the variables?" "What law governs the whole course of the

physical change ?
"

In order to fix this idea, let us study an example. The con-

version of cane sugar into invert sugar in the presence of dilute

acids, takes place in accordance with the reaction :

C
12
#

22 n + SZ
= 2C

6
#12 6

(cane sugar). (invert sugar).

Let x denote the amount of invert sugar formed in the time t ;

the amount of sugar remaining in the solution will then be 1 -
x,

provided the solution originally contained one gram of cane sugar.

The amount of invert sugar formed in the time dt, will be dx. By
Wilhelmy's law (page 46), the velocity of the chemical reaction
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at any moment will be proportional to the amount of cane sugar

actually present in the solution. That is to say,

dx

3 -*(l-*). (l)

where k is the " constant of proportion
"
(page 487). The meaning

of k is obtained by putting x = 0. Thus, dx/dt = k, or, k denotes

the rate of transformation of unit mass of sugar.

From (1), page 5,

v = dx/dt, . (2)

where v denotes the velocity of the reaction. This relation is

strictly true only when we make the interval of time so short

that the velocity has not had time to vary during the process.

But the velocity is not really constant during any finite interval

of time, because the amount of cane sugar remaining to be acted

upon by the dilute acid is continually decreasing. For the sake

of simplicity, let k = ^, and assume that the action takes place

in a series of successive stages, so that dx and dt have finite

values, say Bx and St respectively. Then,

(amount of cane sugar transformed) 8x ,\

(interval of time) &t
'

Let St be one second of time. Let ^ of the cane sugar present

be transformed into invert sugar in each interval of time, at the

same uniform rate that it possessed at the beginning of the interval.

At the commencement of the first interval, when the reaction

has just started, the velocity will be at the rate of 0-100 grams of

invert sugar per second. This rate will be maintained until the

commencement of the second interval, when the velocity suddenly

slackens down, because only
-900 grams of cane sugar are then

present in the solution.

During the second interval, the rate of formation of invert

sugar will be jV of the 0-900 grams actually present at the be-

ginning. Or, 0-090 grams of invert sugar are formed during the

second interval.

At the beginning of the third interval, the velocity of the re-

action is again suddenly retarded, and this is repeated every

second for say five seconds.

Now let &c
lf

&c
2 ,

. . . denote the amounts of invert sugar

formed in the solution during each second (8t). Assume, for the

sake of simplicity, that one gram of cane sugar yields one gram
of invert sugar.



152 HIGHER MATHEMATICS. 69.

(Cane sugar transformed.)

During the 1st second, Sx
l
= 0-100

2nd tea = 0-090

3rd 5^ = 0-081

4th Sx4
= 0-073

5th 5*5 = 0-066

Total, 0-410

This means that if the chemical reaction proceeds during

each successive interval with a uniform velocity equal -to that

which it possessed at the commencement of that interval, then,

0'410 gram of invert sugar would be formed at the end of five

seconds. As a matter of fact, 0*3935 gram is formed.

But 0410 gram is evidently too great, because the retardation

is a uniform, not a jerky process. We have resolved it into a

series of elementary stages and pretended that the rate of forma-

tion of invert sugar remained uniform during each elementary

stage. We have ignored the retardation which takes place from

moment to moment. . If we shorten the interval and determine

the amounts of invert sugar formed during intervals of say half a

second, we shall have ten instead of five separate stages to sum

up, thus :

(Cane sugar transformed.)

During the 1st half second, 8x
x
= 0*0500

2nd 8z2
= 0-0475

3rd Sx3
= 0-0451

4th 8z4
= 0-0429

5th Sx5
= 0-0407

6th Sx,.
= 0-0387

7th Sx7
= 0-0367

8th Sxs
= 0-0349

9th Sx9
= 0-0332

10th 5<r10
= 0-0315

Total, 0-401

The quantity of invert sugar calculated on the supposition

that the velocity is retarded every half second instead of every

second, corresponds more closely with the actual change. The

smaller we make the interval of time the more accurate the result.

Finally, by making &t infinitely small, although we should have

an infinite number of equations to add up, the actual summation

would give a perfectly accurate result. To add up an infinite

number of equations is, of course, an arithmetical impossibility,
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but, by the " methods of integration
" we can actually perform

this operation.

x (sum of all the terms v . dt, between t = and t}
=

5,)
= v . dt + v . dt + v . dt + . . . to infinity.

This is more conveniently written,

Je
v .dt.

o

The signs "2" and "$" are abbreviations for "the sum of

all the terms containing . . .

"
; the subscripts and superscripts

denote the limits between which the time has been reckoned.

The second number of the last equation is called an integral.
"

\f(x) . dx
"

is read " the integral of f(x) . dx ".

When the limits between which the integration (evidently

another word for "
summation") is to be performed, are stated, the

integral is said to be definite ;
when the limits are omitted, the

integral is said to be indefinite. The superscript to the symbol
4

'S" is called the upper or superior limit; the subscript, the

J

V
2

p .dv denotes the sum
i

of an infinite number of terms p . dv, when v is taken between the

limits v
2
and i\.

To prevent any misunderstanding, I will now give a graphic

representation of the

above process. Take

Ot and Ov as coordin-

ate axes (Figs. 84 and

85). Mark off, along
the abscissa axis, in-

tervals 1, 2, 3, . . .
,

corresponding to the

intervals of time St.

Let the ordinate axis

represent the veloci-

ties of the reaction

during these different

intervals of time. Let

the curve vbdfh . . . represent the actual velocity of the trans-

formation on the supposition that the rate of formation of invert

sugar is a uniform and continuous process of retardation. This
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is the real nature of the change. But we have pretended that

the velocity remains constant during a short but finite interval of

time say Bt = I second. The amount of cane sugar inverted dur-

ing the first second is, therefore, represented by the area valO

(Fig. 84) ; during the second interval by the area bc%l, and so on.

At the end of the first interval the velocity at a is supposed
to suddenly fall to b, whereas, in reality, the decrease should be

represented by the gradual slope of the curve vb.

The error resulting from the inexact nature of this "
simplifying

assumption" is graphically represented by the blackened area vab\
for succeeding intervals the error is similarly represented by bed,

def, ... In Fig. 85, by halving the interval, we have consider-

7'0 2'5 2>0 2-6 3-0 3-3 fO f-6 5-0 Seconds

FIG. 85.

ably reduced the magnitude of the error. This is shown by
the diminished area of the blackened portions for the first and

succeeding seconds of time. The smaller we make the interval, .the.

less the error, until, at the limit, when the interval is made infinitely

small, the result is absolutely correct. The amount of invert sugar

formed during the first five seconds is then represented by the

area vbdf ... 50.

The above reasoning will repay careful study ;
once mastered,

the "methods of integration
"

are, in general, mere routine work.

The operation denoted by the symbol
"

J

"* is called integra-

tion. When this sign is placed before a differential function, say

*The symbol "J" is supposed to be the first letter of the word "sum". The

first letter of the differential dx is the initial letter of the word "difference ".
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dx, it means that the function is to be integrated with respect to

dx. Integration is essentially a method for obtaining the sum of
an infinite number of infinitely small quantities.

Not only can the amount of substance formed in a chemical

reaction during any given interval of time be expressed in this

manner, but all sorts of varying magnitudes can be subject to a

similar operation.

The distance passed over by a train travelling with a known

velocity, can be represented in terms of a definite integral. The

quantity of heat necessary to raise the temperature (6) of a given
mass (m) of a substance from

l
to

2 ,
is given by the integral

I

3

wcr . dO, where er denotes the specific heat of the substance.

The ivork done by a variable force (F) when a body changes its

ft
position from s to s

l
is I F . ds. This is called a space integral.

The impulse (magnitude of impressed force) due to a variable force

F, acting during the interval of time
2
- tv is given by the time

integral I F .dt. By Newton's second law, the change of mo-

mentum of any mass (m), is proportional to the impressed force

(impulse). Momentum is defined as the product of the mass into

the velocity. If, when t is t
lt

v = v
l
and when t is t.

2 ,
v = v.

2 ,

Newton's law may be written

m.dv =

The quantity of heat developed in a conductor during the

passage of an electric current of intensity i, for a short interval

of time dt is given by the expression ki . dt (Joule's law), where k

is a constant depending on the nature of the circuit. If the current

remains constant during any short interval of time, the amount of

heat generated by the current during the interval of time t.
2
- t

lt

Jt

2

ki . dt.
*i ,

The quantity of gas (q) consumed in a building during any
interval of time t.

2
- tv may be represented as a definite integral,

where v denotes the velocity of efflux of the gas from the burners.

The value of q can be read off on the dial of the gas meter at any
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time. The gas meter performs the integration automatically.

The cyclometer of a bicycle can be made to integrate, s =\v . dt
J ^i

(v
=

velocity, t = time, s = distance traversed).

Differentiation and integration are reciprocal operations in the

same sense that multiplication is the inverse of division, addition,

of subtraction. Thus,
a x b -T- b = a; a + b - b = a.

d\a .dx = a.dx', \dx = x.

The differentiation of an integral, or the integration of a

differential always gives the original function. The signs of

differentiation and of integration mutually cancel each other.

The integral, \f(x)dx, is sometimes called an anti-differential.

Integration reverses the operation of differentiation and restores

the differentiated function to its original value, but with certain

limitations to be indicated later on.

While any mathematical function can be differentiated without

any particular difficulty, the reverse operation of integration is not

always so easy, in some cases, it cannot be done at all. For in-

f 2 f dx
stance, the integrals 1 ex . dx and I -,.

8 , Y\ nave not vet
J J Vv2* L

)

evaluated.

If, however, the function from which the differential has been

derived, is known, the integration can always be performed. Know-

ing that d(logx) = x~ l
.dx, it follows at once that fa~

1 .dx = logic.

In many cases, we have to compare the integral with a tabu-

lated list of the results of the differentiation of known functions.

The reader will find it an advantage to keep such a list of known

integrals at hand. A set of standard types is given in the next

section, but this list should be extended.

The Nature of Mathematical Eeasoning may now be defined

with greater precision than was possible in 1. There, stress

was laid upon the search for constant relations between observed

facts. But the best results in science have been won by antici-

pating Nature by means of the so-called working hypothesis. The

investigator first endeavours to reproduce his ideas in the form of

a mathematical equation representing the momentary state of the

phenomenon.* Thus Wilhelmy's law (1850) is nothing more than

* Mathematical equations containing differentials or differential coefficients, are

called differential equations.
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the mathematician's way of stating an old, previously unverified,

speculation of Berthollet (1779) ;
while Guldberg and Waage's law

(1864-69) is still another way of expressing the same thing.

To test the consequences of Berthollet's hypothesis, it is clearly

necessary to find the amount of chemical action taking place during

intervals of time accessible to experimental measurement. It is

obvious that Wilhelmy's equation in its present form will not do,

but by
" methods of integration

"
it is easy to show that if

where x denotes the amount of substance transformed during the

time t. x is measurable, t is measurable. We are now in a posi-

tion to compare the fundamental assumption with observed facts.

If Berthollet's guess is a good one, -
. log - must have a con-

L J- *~ X

stant value. But this is work for the laboratory, not the study,

as indicated in connection with Newton's law of cooling, 18.

Integration, therefore, bridges the gap between theory and fact

by reproducing the hypothesis in a form suitable for experimental

verification, and, at the same time, furnishes a direct answer to the

two questions raised at the beginning of this section. We shall

return to the above physical process after we have gone through a

drilling in the methods to be employed for the integration of ex-

pressions in which the variables are so related that all the x's and

dx's can be collected to one side of the equation, all the y's and

dy's to the other. In Chapter VII., we shall have to study the in-

tegration of equations representing more complex natural processes.

If the mathematical expression of our ideas leads to equations

which cannot be integrated, the working hypothesis will either

have to be verified some other way,* or else relegated to the great

repository of unverified speculations.

70. Table of Standard Integrals.

Every differentiation in the differential calculus, corresponds

with an integration in the integral calculus. Sets of corresponding

functions are called " Tables of Integrals ".

*Say, by slipping in another "simplifying assumption". Clairaut expressed his

ideas of the moon's motion in the form of a set of complicated differential equations,

but left them in this incomplete stage with the invitation,
" Now integrate them who

can ". But see 107, 108, and 144.
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The following are the more important ; handy for reference,

better still for memorising :

TABLE I. STANDARD INTEGRALS.

Function.
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the product of a variable and a constant, is equal to th constant

multiplied by the differential of the variable". It follows directly

that the integral of the product of a constant and a differential, is

equal to the constant multiplied by the integral of the differential.

X.g. t

Ja . dx = a^dx = ax.

Jlog a . dx = log a\dx = x . log a.

On the other hand, the value of an integral is altered if a term

containing one of the variables is placed outside the integral sign.

For instance, the reader will see very shortly that while

= ^x
3

; x\xdx = ^x
3

.

(2) A constant term must be added to every integral. It has

been shown that a constant term always disappears from an

expression during differentiation, thus,

d(x + C) = dx.

This is equivalent to stating that there is an infinite number
of expressions, differing only in the value of the constant term,

which, when differentiated, produce the same differential. In

stating the result of any integration, therefore, we must provide
for any possible constant term, by adding on an undetermined,

"empirical," or "arbitrary" constant, called the constant of

integration, and usually represented by the letter C. Thus,

]du = u + C.

If dy = dx,

\dy + C
l
= \dx + C

2 ;

y + C
1
= x + C

2 ; or, y = x + C,

where C = C
2
- Cr

The geometrical signification of this constant is analogous to

that of "6" in the tangent form of the equation of the straight

line, formula (8), page 69 ; thus, the equation

y = mx + b,

represents an infinite number of straight lines, each one of which

has a slope m to the z-axis and cuts the y-axis at some point b.

An infinite number of values may be assigned to 6. Similarly,

an infinite number of values may be assigned to C in
$

. . . dx + C.

According to Table I.,

dx dx

etc. This means that sin
~ l

x, cos
~ lx'r or tan

- l
x, cot

~~ l
x,
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only differ by a constant term. This agrees with the trigno-

metrical properties of these functions illustrated in example (1),

page 113. See also 106. The following remarks are worth

thinking over :

" Fourier's theorem is a most valuable tool of science, practical and theo-

retical, but it necessitates adaptation to any particular case by the provision of

exact data, the use, that is, of definite figures which mathematicians humorously
call '

constants,' because they vary with every change of condition. A simple
formula is n + n = 2n, so also n x n = nz

. In the concrete, these come to the

familiar statement that 2 and 2 equals 4. So in the abstract, 40 + 40 = 80,

but in the concrete two 40 ft. ladders will in no way correspond to one 80 ft.

ladder. They would require something else to join them end to end and to

strengthen them. That something would correspond to a constant ' in the

formula. But even then we could not climb 80 ft. into the air unless there

was something to secure the joined ladder. We could not descend 80ft. into

the earth unless there was an opening, nor could we cross an 80 ft. gap. For

each of these uses we need something which is a ' constant '

for the special

case. It is in this way that all mathematical demonstrations and assertions

need to be examined. They mislead people by their very definiteness and

apparent exactness. . . ." J. T. SPRAGUE.

(3) Integration of a sum and of a difference. Since

d(x + y + z + . . . )
= dx + dy + dz + . . .

,

it follows that

$(dx + dy + dz + . . .
)
= \dx + \dy + \dz + . . .

,

= x + y + z + . . .
,

plus the arbitrary constant of integration.

It is customary to append the integration constant to the final

result, not to the intermediate stages of the integration.

Similarly,

\(dx
- dy - dz -...) = ]dx

-
\dy

-
\dz

-
. . .

= x - y - z -
. . . + C.

EXAMPLES. (1) Show

f{log (a + bx) (1 + 2x)}dx = Jlog (a + bx)dx + Jlog (1 + 2x)dx + C.

(2) Show
(logf^rl^* 4 J

! g (
a + bx

)
(lx ~ Pg (* + 2^dx + C -

(4) Integration of x
n

. dx (see page 22). Since

d(x
n+l

)
=

(n + l)x
n
dx; xn .dx = dxn + l

/(n + 1) ;

C. . (1)

To integrate any expression of the form axn
. dx, it is, therefore,

necessary to increase the index of the variable by unity, multiply
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bit <iny constant term that may be present, and divide the product

by the new index.

An apparent exception occurs when n = -
1, for then

*~ 1 + 1

_ *
_

See'page 224. We have seen, page 36, (6), that

dx
d(\ogx) = = x~ l

.dx,

.-. \x~
l.dx = logx + C. ... (2)

If, therefore, the numerator of a fraction can be obtained by

the differentiation of its denominator, the integral is the natural

logarithm of the denominator.

It is worth remembering that instead of writing log x + C, we

may put

log x + log c = log ex,

for log c is an arbitrary constant as well as C.

EXAMPLES. (1) Show ja . dx/bx = (a . logx)lb + C.

(2) Show J2bx . dxj(a
-

bx*)
= -

log(a
-

bx*) + C.

(3) Show jax? . dx = {ax* + C.

(4) Show jax-
ll5 .dx = 5ax*'5 + C.

(5) One of the commonest equations in physical chemistry is,

dx = k(a
-

x) . dt.

C dx
Rearranging terms, kt = /

-
,

.-. kt = -
log (a

-
x),

but log 1 = 0,

.-. kt = log 1 -
log(a

-
x), or, k =

7
log^r^ + c -

(6) Wilhelmy's equation,

dy fdy
-V7 = -

ay, may be written I = - at.

Remembering that loge = 1, we have

log y = log b - at log e
; or, log y = log e

~ at + log b,

where log b is the integration constant, hence,

log be
~ at = log y ; y = be

- at
.

The meaning of these constants will be deduced in the next section.

(7) By a similar method to that employed for evaluating Jx
n
dx, J*

l
dx,

show

\a
xdx =

j^
+ C ; $e*dx

= e* + C
; je~ "*dx =---. . (3)

In the same way verify the results in Table I.

(8) Prove - f^
=^^ ^n + C, .... (4)

by differentiating the right-hand side. Keep your result for use later on.

L
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(9) Evaluate Jsin
4

; . cos x . dx. Note that coaxdx = d($inx), and that

sin4x is the mathematician's way of writing (sin x)*.*

.-. fsin
4
o; . cos x . dx

("

sin4ic . d(sin x) = ^ sin5
ie . + C.

(10) What is wrong with this problem :

" Evaluate the integral ja?
3 "

?

Hint, the symbol
"

J
" has no meaning apart from the accompanying

" dx ".

For brevity, we call "
|
" the symbol of integration, but the integral must be

written, J
. . . dx.

(5) Integration of the product of a polynomial and its differ-

ential. Bead (3), page 24. This is a simple extension of the

preceding. Since

d(ax
m + b)

H = n(ax
m + b)

n ~ l
. amxm ~ l

.dx,

where amxm ~ l .dx has been obtained by differentiating the ex-

pression within the brackets,

.-. n\(ax
m + b)

n ~ lamxm ~ l .dx = (ax
m + b)

n + C. . (5)

To integrate the product of a polynomial with its differential,

increase the index of the polynomial by unity and divide the result

by the new exponent.

EXAMPLES. (1) Show J(3az
3 + l)*9ax

z
. dx = %(3ax

s + I)
3 + C.

(2) Show j(x + 1)
-'

. dx = B(x + I)
1 /3 + C.

(6) Integration of expressions of the

(a + bx + ex2 + . . .
)

m
xdx, . . (6)

where m is a positive integer. Multiply out and integrate each

term separately.

EXAMPLES. (1) Show J(l + x)*x
3dx =

(| + x + %x*)x* + C.

(2) J(
+ x^x^dx = (fa

2 + x% + *x)x% + C.

The favourite methods for integration are by processes known
as "the substitution of a new variable," "integration by parts" and

by
" resolution into partial fractions". The student is advised to

pay particular attention to these operations. Before proceeding

to the description of these methods, we shall return once more to

the integration constant.

72. How to find a Value for the Integration Constant.

It is perhaps unnecessary to remind the. reader that integration

constants must not be confused with the constants belonging to the

* But we must not write sin
~ lx for (sin x)

~ l
,
nor (sin x)

~ l for sin
~ 1

x. Sin
~ l

,

cos
~ 1

,
tan

~ l
,

. . . have the special meaning pointed out in 15.
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original equation. For instance, in the law of descent of a falling

body
dc-dt = <

i ; \dv =
y\dt, or, v = gt + C. . . (1)

Here
(j

is a constant representing the increase of velocity due

to the earth's attraction, C is the constant of integration. The

student will find some instructive remarks in 118.

There are two methods in general use for the evaluation of the

integration constant.

FIRST METHOD. Eeturning to the falling body and to its

equation of motion,

v =
gt + C.

On attempting to apply this equation to an actual experiment,
we should find that, at the moment we began to calculate the

velocity, the body might be moving upwards or downwards, or

starting from a position of rest. Ah1

these possibilities are included

in the integration constant C. Let v denote the initial velocity

of -the body. The computation begins when t = 0, hence

V
Q
= g x + C, or, C = v .

If the body starts to fall from a position of rest, v = C = 0,

and

^dv
=

gt, or, v = gt.

This suggests a method for evaluating the constant whenever

the nature of the problem permits us to deduce the value of the

function for particular values of the variable.

If possible, therefore, substitute particular values of the vari-

ables in the equation containing the integration constant and solve

the resulting expression for C.

EXAMPLE. Find the value of C in the equation

which is a standard "
velocity equation

"
of physical chemistry, t represents

the time required for the formation of an amount of substance x. When the

reaction is just beginning, x = and t = 0. Substitute these values of x and
t in (2).

Substitute this value of C in the given equation and we get

t = !_/.
1 . 1\ 1 . a

SECOND METHOD. Another way is to find the values of x

corresponding to two different values of t. Substitute the two
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sets of results in the given equation. The constant can then be

made to disappear by subtraction.

EXAMPLE. In the above equation, (2), assume that when t = tv x = x
lt

and when t = t2 ,
x = x2 ;

where x
lt

a?2 , ^ and t2 are numerical measurements.

Substitute these results in (2).

By subtraction and rearrangement of terms

The result of this method is to eliminate, not evaluate the constant.

Numerous examples of both methods will occur in the course

of this work. Some have already been given in the discussion on

the "
Compound Interest Law in Nature ".

73. Integration by the Substitution of a New Variable.

When a function can neither be integrated by reference to Table

I., nor by the methods of 71, a suitable change of variable may
cause the function to assume a less refractory form. The new
variable is, of course, a known function of the old.

This method of integration is, perhaps, best explained by the

study of a few typical examples.

(1) Evaluate J(a + x)
ndx. Put a + x = y, therefore, dx = dy and

J(a + x)
ndx =

ly
n
dy.

From (1), page 158,

\y
n
dy = y

n
^l(n + 1) + C.

Substitute for y,

J(a + x)
ndx =

(a + x)
n
^i(n + 1) + C. . . (1)

EXAMPLES. Integrate the following expressions :

(1) j(a
-

bx)
ndx. Ansr. -

(a
-

bx)
n + l

l(n + 1) + C.

(2) |(a
2 + x2

)-n*xdx. Ansr. ^(a
2 + z2

) + C.

(3) J(a + x)
~ mdxl Ansr. -

l/(m
-

1) (a + x)
m ~ 1 + C. Keep this result

for future reference.

Ansr. log (log a?) + C.
logcc

When the student has become familiar with integration he will find no

particular difficulty in doing these examples mentally.

(2) Integrate (1
-

ax)
mxndx. Put y = 1 - ax, therefore,

x = (1
-

y)/a and dx = -
dy/a.
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Substitute these values of x and dx in the original equation.

5(1
- ax)'xdx = -

^nS(l
- y)y

m
dy,

which is the type of (6), page 162. The rest of the work is obvious.

Method (6), 71.

(3) Trignometrical functions can often be integrated by these

methods. For example, required the value of $tan xdx.Jfsin x,
tan xdx =

\
dx.

JGOSX
Let cos x = u,

- sin xdx = du. Since -
\duju = -

log u, and

log 1 = 0.

I tan xdx = log
- - = log sec x + C.

J

EXAMPLES. Show that (1) Jsin x . cos x . dx = |sin
2x + C.

(2) J(l + xyx*dx = ^(1 + xY^(5x - x + |) + C.

(3) Jcot xdx = log sin x + C.

(4) Jsin x . dxjcos^x = sec x + C.

(5) Jcos x . dxfsiv?x = - cosec x + C.

(6) Evaluate
je

~ *2xdx. Multiply and divide by - 2

-\\e-^d(-x^=- &-**+ C. . . (2)

dx
(4) Integrate ,,

2 _ ^^
Put y = x/a, .\ x = ay, dx = ady,

^(a*
- ^2

)
= a s/1 -^ ;

Jd#
r % r 7 ^

-7=f =T2
= -7= -

2
= ^in ^)= sin- !- + C.

Va2 - a?
2

J vl -
i/
2 \ a

See page 166.

EXAMPLE. Integrate .
-

^dx, by substituting x = -..

Ansr. -
N/(a

2 - 2
)

:{

. /3a
2 + C.

(5) Some expressions require a little "humouring". Facility

in this art can only be acquired by practice. A glance over the

collection of formulae in Chapter XII. will often give a clue. In

this way, we find that sin x = 2 sin \x . cos \x. Hence integrate

fdx
. f dx fsec x . dx

srn^'
*- e<

j2sink;.cos^
or

J

Divide the numerator and denominator by cos'2i#, then, since

l/cos2
Ja?

= sec'2^ and d(tana?)
= aec?x.dx, page 32, (3),

~. f dx _ [sec
2^ . d($x) = rd(tan^)

'

J sin x
~

J tanja; ~J tan \x
= log tan \x + C.
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EXAMPLES. (1) Remembering that cos x = sin ($TT + x), (8), page 499, show
that \dx]cos x = log tan (TT + %x) + C.

(2) Integrate /sln j ĉosa.-
Hint

>
see (17), page 499.

f

j

cos2x + sin2# , /'cos x , /'sin #
dx =snxcosx

Here are a few useful though simple
"
tips

"
for special notice :

1. Any constant term may be added to the numerator of a fraction pro-

vided the differential sign is placed before it. The object of this is usually
to show that the numerator of the given integral has been obtained by the

differentiation of the denominator. If successful the integral reduces to the

logarithm of the denominator. E.g.,

2. Jsin nx . dx may be made to depend 011 the known integral Jsin nx . d(nx)

by multiplying and dividing by n. E.g.,

Jcos nx .dx -
|cos nx . d(nx) sin nx + C.

3. Add and subtract the same quantity. E.g.,

rx.dx c(X + a>
- *

(/i
i i \

J l^Tx
=
J -1 + 2*

dx =
j U

-
2

'

lT2i )
dx

>
etc '

4. Note the addition of log 1 makes no difference to the value of an ex-

pression, because log 1 = 0; similarly, multiplication by logee makes no

difference to the value of any term, because log<,e
= 1.

(6) It very frequently happens that an expression involving the

square root of a quadratic binomial can be readily solved by the

aid of a lucky trignometrical substitution. The form of the in-

verse trignometrical functions (Table I.) will sometimes guide us

in the right choice. If the binomial has the forms :

\/l - x2
,
or >/a

2 - x2
, try x = sin 0, or a sin 0, or cos

;

\/x
2

1, or Va?2 - a2
, try x = sec 0, or a sec 0, or cosec 6 ;

>Jx* + 1, or \/x
2 + a2

, try x = tan 0, or a tan 0, or cot 6.

(Lamb's Infinitesimal Calculus, p. 184
;

Williamson's Integral

Calculus, p. 73.)

EXAMPLES. (1) Find the value of j\/(
2 -

x*)dx. In accordance with the

above rule, put x = a sin 0, .-. dx = a cos 6 . d6.

- .-. J\/(
2 -

x*)dx = aa
/cos

2
0d0;

and since 2 cos2 = 1 + cos 20, (28), page 500, we may continue,
= a2

J(l + cos 26)de,

= %a?(0 + i sin 20) ;

but x a sin 0,
= sin - l

xja, and

| sin 20 = sin . cos = sin X/(1
-

sin-0),

C.
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If the beginner has forgotten his "trig." he had better verify these steps

from the collection of trignometrical formulae in Chapter XII. See also (8),

70.

sin ede c de i r de e / e^

cos$e _ 2cos2$0 _ I + cos

(3) Show f
,. f" -> = log (a; + Vx2 + 1) + C. Put x = tan 0. Note

.' S \
X T *|

that tan (r + $0) = tan + sec = x + v/(x
2 + 1) ;

sec 6d8 = log (tan 6 + sec 0).

(4) Show
I ,.^_ 1

> = log (a: + N/x2"^!) + C. Put x = sec 0.

(7) jf%e integration of x
m ~ l

(a + bxn)
p

. dx. (See 76, below.)

(i.) If p is a positive integer. Expand the binomial and treat

as on page 162.

(ii.) If p is fractional, say p = r/s ;

(a) Let m/n be a positive integer. Substitute a new variable

with an index equal to the denominator of the fractional index p,

so as to make a + bxn = z*. Then proceed as follows :

EXAMPLE. Evaluate
J'x

5
(l + x*)

l
?dx. Here m = 6

;
n = 2

; p =
J. Put

1 + x2 = *2
, then, x2 = s2 - 1

;

.-. 5 = \/i + x2 ; x. dx = z . dz.

Substitute these values as required in the original expression,

+ x2
) + 42(1 + x2

) + 35} + C.

(b) Let m/n be a negative integer.

EXAMPLE. Evaluate Jx
- 4

(1 + x2
)

" ll
*dx. Here m = 3; n = 2 ; p = .

Put

1 + x2 = 22x2
; .-. x - 2 = z> - 1

;
.-. x - 4 = (z*

-
I)

2
;

.-. x = (z
9 -

1)
- 1/2

;

Hence, jx
- 4

(1 + x2
)

~ 1/2dx = -
j(z

z -
l)dz ;

(c) m/n + p is integral. The last example comes under this

head.



168 HIGHER MATHEMATICS. $ 74.

7$. Integration by Parts.

On page 26, it was shown that

d(uv) = vdu + udv.

Now integrate both sides *

uv = tydu + \udv.

Hence, \udv =. uv -
\vdu + C, . . (1)

that is to say, the integral of udv can be obtained provided vdu

can be integrated. This is called integration by parts.

EXAMPLES. Evaluate the following expressions :

(1) jxlogxdx. Put
u = log x, I dv = x .dx;
du = dx/x, I

v = ^x
2

.

Substitute in (1)

fa .dv = \x log x .dx uv -
fa . du,

= $x
2
log x -

\\x . dx = %x
2
log x - x2

,

= \x
2
(log a? -

) + C.

(2) jx cos nx .dx Put
u = x, I dv = {cos nx . d(nx)}jn ;

du = dx, I
v = (sin nx)jn.

From (1), Ja?
cos nx . dx = (x sin nx)/n

-
|(sin

nx . dx)jn ; etc.

(3) Show by "integration by parts
" that

jx
2 sin x . dx = (2

- x2
)
cos x + 2x sin a? + C.

In this example there are two integrations to be performed, first x2 cos x . dx,

and then x cos x . dx.

(4) Solve the equation,

dv = a(v
-

2v) . dtf ^p,

where
, a, p are constant and v = when t = 0. Ansr.

log
- i log (t>

-
2v) = a*/ ^/p.

(5) \xe*dx
= (x

-
1)0* + C. Prove this.

The selection of the proper values of u and v is to be determined by trial.

A little practice will enable one to make the right selection instinctively.

The rule is that the integral jv . du must be more easily integrated than the

given expression. In this example if we take u = ex
,
dv = xdx, fa . du becomes

$jx*e
x
dx, a more complex integral than the one to be reduced. The right

choice is u = x, dv = exdx.

(6) Show jx
2e*dx = (x

2 + 2x -
2)e

x + C.

(7) Evaluate by "integration by parts," {^(a
2 - x2

)dz. Put

u = ^(a
2 - a?

2
),

\dv = dx;

du = x.dx I ^(a?
- x2

), \
v = x.
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Transpose the last term to the left-hand side ;

2jVa
a - x2 . dx = x >/aa - xa + a sin

- l

xla (page 158),

a2 sin - xa + * /x2 - x2 + C.

75. Integration by Successive Reduction.

A complex integral can often be reduced to one of the standard

forms by the "method of integration by parts". By a repeated

application of this method, complicated expressions may often be

integrated, or else, if the expression cannot be integrated, the non-

integrable part may be reduced to its simplest form. See examples

<3) and (6), 74.

EXAMPLES. (1) Evaluate
Jic

2cos nxdx. Put

u = x2
,

I dv = {cos nx . d(nx}\ln ;

du = 2xdx, I
v = (sin nx)jn.

Hence, from (1),

/o;2sin nx 2 f
arcos nxdx =--- / x sin nxdx. ... (1)

Now put u = x, I dv = sin nx . dx ;

du = dx\ v = -
(cos nx)/n.

Hence, |x sin nx . dx = -
(x cos nx)jn -

J(
- cos nx . dx)/n,

= (- x cos nx)jn + (sin nx)ln
2

. ... (2)

Now substitute (2) in (1) and we get,

#2sin . nx 2x cos nx 2 sin nx

In this example, we have made the integral Jx
2cosnx' . dx depend on that

of x sin nx . dx, and this, in turn, on that of - cos nx . d(nx) t
which is a

known standard form.

(2) Evaluate
jor'cos

x . dx. Put

u = x4
,

I dv = cos xdx
;

du = ix3dx, \
v = sin x.

.'. Jorkjos xdx = a^sin x -
^a^sin xdx.

In the same way,

dja^sin xdx = 4x3cos x - 3 . 4
jo;

2cos xdx.

Similarly,

3 . 4jx
2 cos xdx = 3 . 4 . x* sin x + 2 . 3 . 4jx sin xdx,

And finally,

2.3. 4jx sin xdx = 2 . 3 . 4x cos x + 1 . 2 . 3 . 4 sin x.

All these values must be collected together, as in the first example. In

this way, the integral is reduced, by successive steps, to one of simpler form.

The integral Jar*
cos xdx was made to depend on that of x3 sin xdx, this, in

turn, on that of x~ cos xdx, and so on until we finally got fcos xdx, a well-known

standard form.

It is an advantage to have two separate sheets of paper in working through
these examples ; oh one work as in the preceding examples and on the other

enter the results as in the next example.
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(3) Integrate jx
se*dx.

-
2jxe*dx),

+ 2 . 3(xe*
-

je*dx),
= (x

s - 3x2 + 6,r -
6)e* + C.

(4) Integrate coanxdx
; sinnxdx and sinmx . cosnxdx (see page 184).

76. Reduction Formulae (for reference).

In 74, we found it convenient to refer certain integrals to

a " standard formula ". In 75, we reduced a complex integral

to simpler terms by a repeated application of the same formula .

Such a formula is called a reduction formula.

The following standard reduction formulae are convenient for

reference, others will be found in 79 and elsewhere.

A. The integral xm(a + bxn
)v.dx, may be made to depend on that of

\x
m - n

(a + bxn)P +
l

. dx, through the reduction formula :

x - + 1
(o + bx)f

+ l - a(m - n + l)fo?-(a + bxn)P. dx
.dx= _^___J2!

where m is a positive integer. This formula may be applied successively until

the factor outside the brackets, under the integral sign, is less than n. Then

proceed as on page 162.

B. In A, m must be positive, otherwise the index will increase, instead of

diminish, by a repeated application of the formula. Therefore, when m i&

negative, transpose A and divide by a(m - n + 1). Thus,

. (B).-
n

where m is negative.

C. Another useful formula diminishes the exponent of the bracketed term

in the following manner :

x m + l

(a + bx)*> + anp\x
m
(a + bx*y

- ldx
\**(a + bxny . dx = - -^-XL-i- _

, . (C>

where p is positive.

D. 1i p is negative ,

xm + l
(a + bx")v

+ ] + (np + m + n + l)jx
m
(a + bxn}v +

ldx

Formulae A, B, C, D have been deduced by the method of integration by

parts. Perhaps the reader can do this for himself.

NOTE. Formula A decreases (algebraically) the exponent of the monomial

factor while B increases the exponent of the same factor. Formula C decreases

the exponent of the binomial factor while D increases the exponent of the

binomial factor.
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EXAMPLES. Evaluate the following integrals :

(1) J N '(a + j-
2
)rf;r. Hints, use C, Put m = 0, 6 = 1, n = 2, ;>

=
$. Ansr.

tf&V(a + 2
) + a log {x + v/(a + x2

)}] + C.

(2) j>
4
r/.i'/s (/'-

- z2
). Hints, put ?n = 4, 6 = 1, n = 2, p =

J. Use A
twice. Ansr. {8a

4 sin x/a
- x(2x

2 + 3 2
) v'(a

2 - x2
) + C.

(3) jx*dx I v '(l
- x2

). Hint, use A. Ansr. -
(x

2 + 2) N/(l
- x2

) + C'.

(4) J" v'( + 6x2
)

- 3dx. Ansr. x(a + bx)
-
'/> + C. Use D.

(5)
J a? /^_ a2

.
i -e -

J
^ ~ 3

(
- 2 + a-

2
)

-
idx. Hint, use B. m = -

3, 6 = 1,

Jx2 - rt
2 1 X

n = 2, = - Ansr.
v-- + sec- 1-.

77. Integration by Resolution into Partial Fractions.

Fractions containing higher powers of x in the numerator than

in the denominator, may be reduced to a whole number and a

fractional part. Thus, by division,

s? . dx / x \ ,

FTI
= r - * +^nr8-

The integral part may be differentiated by the usual methods,

but the fractional part must often be resolved into the sum of a

number of fractions with simpler denominators, before integration

can be performed.

We know that A may be represented as the sum of two other

fractions, namely 1 and ^, such that = 1 + ^. Each of these

parts is called a partial fraction. If the numerator is a com-

pound quantity and the denominator simple, the partial fractions

may be deduced, at once, by assigning to each numerator its own
denominator and reducing the result to its lowest terms. E.g.,

x2 + x + 1 _2 ^ i 1 1 1
~^ -

^3
+

^3
+

^3
~ -

x
+

3,2
+

^3-

When the denominator is a compound quantity, say -g ,
it

x x

is obvious, from the way in which the addition of fractions is per-

formed, that the denominator is some multiple of the denominator

of the partial fractions and contains no other factors. We there-

fore expect the denominators of the partial fractions to be factors

of the given denominator. Of course, this latter may have been

reduced after the addition of the partial fractions, but, in practice,

we proceed as if it had not been so treated.

To reduce a fraction to its partial fractions, the first thing to

do is to resolve the denominator into its factors and assume each
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factor to be the denominator of a partial fraction. Then assign
a certain indeterminate quantity to each numerator. These

quantities may, or may not, be independent of x. The procedure
will be evident from the following examples. There are four cases

to be considered.

Case i. The denominator can be resolved 'into real unequal

factors of the type :

1

(a
-
x)(b

-
'x)'

'

Assume that

(a
-

x) (b
-

x) a - x b - x'

A(b
-

x) + B(a -
x)

(a
-

x) (b
-

x)
'

1 _ Ab + Ba - Ax - Ex
' '

(a
-

x)(b
-

x)

~
(a

-
x) (b

-
x)

We now assume that the numerators on the two sides of this

last equation are identical* and pick out the coefficients of like

powers of x, so as to build up a series of equations from which

A and B can be determined. For example,
Ab + Ba = 1; x(A + B) = 0; .-. A + B = 0; .-. A = - B;

--
,

. .
--

.

b - a b - a

* An identical equation is one in which the two sides of the equation are either

identical, or can be made identical by reducing them to their simplest terms. E.g.,

ax2 + bx + c = ax2 + bx + c
;

(a
-

x)l(a
-

x)* = \l(a
-

x),

or, in general terms,

a + bx + ex2 + . . . =a' + b'x + c'x2 + . . .

An identical equation is satisfied by each or any value that may be assigned to the

variable it contains. The coefficients of like powers of x, in the two members, are also

equal to each other. Hence, if x = 0, a = a'. We can remove, therefore, a and a'

from the general equation. After the removal of a and a', divide by x and put x = 0,

hence b b'
; similarly, c c', etc. For fuller details, see any elementary textbook

on algebra.

The symbol
" = "

is frequently used in place of " = " when it is desired to em-

phasise the fact that we are dealing with identities, not equations of condition. While

an identical equation is satisfied by any value we may choose to assign to the variable

it contains, an equation of condition is only satisfied by particular values of the vari-

able. As long as this distinction is borne in mind, we may follow customary usage

and write " = " when " = "
is intended. For " = " we may read,

"
may be trans-

formed into . . . whatever value the variable x may assume"
;
while for "

=," we

must, read, "is equal to ... when the variable x satisfies some special condition or

assumes some particular value ". See page 386.
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Substitute these values of A and B in (1).

L_ _! L_ _J_ J_ (2}
(a-x)(b

-
x) b - a a - x b - a b - x

An ALTERNATIVE METHOD, much quicker than the above, is

indicated in the following example : Find the partial fractions of

the function in example (2) below.

1
.

*
|

B C
.

(a
-

x) (b
-

x) (c
-

x) a - x b - x c - x '

.-. (b
-

x) (c
- x)A + (a

-
x) (c

- x)B + (a
-

x) (b
- x)C = 1.

This identical equation is true for all values of x, it is, therefore, true

when x = a, .', (b
-

a) (c
-

a)A = 1
; .-. A =

^ _ a^c _ a
^

;

when*- 6, ,. (c
-

b) (a
-

b)B = 1
;

,. B -
(c

.^ ,
6)

;

when x =
c, .-. (a

-
c) (6

-
c)C = 1

; .-. C =
^ _ c^b _ c

j
\

'

(a
-

x) (b
-

x) (c
-

x) (b
-

a}(c
-

a) (a
-

x)

1 1_f
(c

-
b) (a

-
b) (b

-
x)

+
(a

-
c) (b

-
c) (c

-
x)'

EXAMPLES. (1) Show that

t dx _ f
dx r dx

J (a
-

x) (b
-

x)

~
J (b

-
a) (a

-
x)

~
J (b

-
a) (b

-
x)'

= ,

1
. log _^^' + C. (3>

b - a a - x

(2) Evaluate / . Keep your answer for use later on.
J (a

-
x) (b

-
x) (c

-
x)

(3) Show that
/".-

***

9
= JL log <L-^ + C.

J a
2 - bzx2 2ab 6 a - bx

(4) J. J. Thomson's formula for the rate of production of ions by the

Rontgen rays is

!-)/(VM-
Note that a - x2 = (Ja - x)(Ja + x).

(5) The velocity of the reaction between bromic and hydrobromic acida

is, under certain conditions, represented by the equation :

dx/dt = k(na + x) (a
-

x).
Hence show that

1 na + x
~

(n + l)ar
log a- x "*

The constant is to be evaluated in the usual way by putting x = when
t = 0. For practical convenience, this equation may be adapted for use with

common logarithms by multiplying the right-hand side with 2-3026.

dx = 2-3026 n(a+ x)
(6) If

ft
= k(a + x) (na

-
'x), show that k = .

l]at
. logio na _ x,'
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(7) Warder's equation for the velocity of the reaction between chloracetic

acid and ethyl alcohol is

dy/dx = ak{l
-

(1 + b)y] {!-(!- b)y}.

Hence, show that

loglo[{l
-

(1
- %}/{! -

(1 + %}] = 0-8686 abkt.

Case ii. The denominator can be resolved into real factors

some of ivhich are equal. Type :

1

(a
-

x)
2
(b

-
x)

The preceding method cannot be used here because, if we put
1 A B C _A + B C

(a
-

x)
2
(b

- x)~ a - x a - x b - x~ a - x b - x'

A + B must be regarded as a single constant. Eeduce as before

and pick out coefficients of like powers of x. We thus get three

independent equations containing two unknowns. The values of

A, B and C cannot, therefore, be determined by this method. To

overcome the difficulty, assume that

1
=

A B C

(a
-

x)
2
(b x)~ (a

-
x)

2 a - x b - x'

Multiply out and proceed as before, thus,

A l
' B l C l

:=

b-a ' b-a ' b-a'

EXAMPLES. (1) Goldschmidt''s equation for the velocity of the chemical

reaction between hydrochloric acid and ethyl alcohol, is

dxjdt = k(a
-

x) (b
-

)
2

.

Hence,
, _ f dx _ I ( [

dx
f dx f

dx \~
J (a -x)(b- x)*

~
a~^~b\J (b~=~xf ~l b^c ~J "="/'

a - b b - x a - b b - x

To find a value for C, put x = when t = 0. The final result is

kt(a
-

6j
2 = ^

~
>
x
+ log

(2) Show

(4) Price's equation for the velocity of the chemical reaction between

hydrochloric acid and ethyl alcohol, is as follows:

dxjdt = k{(a
-

x) (b
-

x)*
-

ax(c + x)(b
-

x)}.

Integrate this equation and evaluate the constant for x= and t= 0. Ansr.

Zablb + c)kt =
* + c -

frfl
- 2)

1
x(a+b + ac

VP *x(a +b + ac

-
Iog{x

2
(l

-
a)

-
x(a + b + acj + ab}/ab



$77. THE INTKCiKAL CALCULI -
17:.

where P = (a + b + oc)
2 - 4a6(l

-
a). This rather tedious example will }

found in the Journal of tJie Clwnical ,SWiV///, 79, 314, 1901.

(5) Walker tuul ./w/.st;/'.s equation for the velocity of the chemical reaction

between hydrobromic and bromic acids, is

dx\dt = k(a -
x)*.

Hence show that 3fc = {l/(a
-

.r)
;{ -

The reader is probably aware of the fact that he can always

prove whether his integration is correct or not, by differentiating

his answer. If he gets the original integral the result is correct.

Case iii. The denominator can be resolved into imaginary
*

factors all unequal. Type :

1

(a* + a?) (b + x)'

*
Imaginary Quantities. No number is known which will give a negative value

when multiplied by itself. The square root of a negative quantity cannot, therefore, be

a real number. In spite of this fact, the square roots of negative quantities frequently
occur in mathematical investigations. Again, logarithms of negative numbers, inverse

sines of quantities greater than unity, . . ., cannot have real values.

LetV - 2 be such a quantity. If - a2 is the product of 2 and -
1, + \/ - a2 may-

be supposed to consist of two parts, riz., + a andV - 1. Mathematicians have agreed

to call a the real part of \/- a2 and \/- 1, the imaginary part. Following Gauss, \/- 1

is written i (or i).

*J - 1, or i obeys all the rules of algebra. Thus,

^Ti x v^l=-l; N/^4 = 2 N/rT; N/-^ x Jb= V56;i = V^T:i4 = l.

EXAMPLES. (1) Show

|4 = 1; i** + i = t; t

- + 2 = _ i;
4 + 3 = _ tm < f ^

(2) Prove a2 + 62 = (a + ib) (a
-

ib) . . . . (2)

a + ib ac - bd be + ad
(3) Show - = -

(4) Show (a + ib) (c + id)
= (ac

-
bd) + (ad + bc)t.

(5) The quadratic x* + bx + c = 0, has imaginary roots only when bz - 4c is less

than zero (formula (5), page 388). If a and j8 are the roots of this equation, show that

a = - 6 + it V4C - 62 and ft
= - \b -

satisfy the equation.

The imaginary numbers from - oo to +00 are :

-
OOt, . . ., -I, . . ., Ol, . . ., + i, . . ., + ODi,

corresponding with the real numbers
-

oo, . . .,
-

1, . . ., 0, . . ., + 1, . . ., 4- oo.

By combining a real with an imaginary quantity we get what is known as a complex

number, or a complex quantity. Such is x + ly. So important is the unthinkable

J- 1 in modern theories, that the algebra of real quantity is now a special branch of

the algebra of complex quantity.
We know what the phrase "the point x, ?/" means. If one or both x and y are

imaginary, the point is said to be imaginary. An imaginary point has no geometrical
or physical meaning. If an equation is affected with one or more imaginary coefficients,
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Since imaginary roots always occur in pairs (page 386), the

product of each pair of imaginary factors will give a product of the

form, x2 + a?. Instead of assigning a separate partial fraction to-

each imaginary factor, we assume, for each pair of imaginary
factors, a partial fraction of the form :

Ax + B
aT+W

Hence _L Ax + B C= "

EXAMPLES. Verify the following results

dx C( A B Cx -:- Df dx C( A
J (x-i)*(x* + i) ^J (w

dx _ 1 1 1 + x

Case iv. The denominator can be resolved into imaginary

factors, some of which are equal to one another. Type :

(a
2 + x*)

2
(b + x)

Combining the preceding results,

1 Ax + B
.
Cx + D E

(a
2 + x*)

2
(b + x) (a* + z2

)
2 2 + & b + x

In this expression, there are just sufficient equations to determine-

the complete system of partial fractions, by equating the coefficients-

of like powers of x.

The differentiation of many of the resulting expressions usually

requires the aid of one of the reduction formulae
( 76).

EXAMPLE. Prove

C(x
A + x - l)dx _ f xdx f dx

J (x
2 + I)

2
=
)x* + 1 ~J(z2 + I)

2
'

Integrate. Use formula D for evaluating the last term.

Ansr. log (x
2 + 1)

-
Jar/(l + a-

2
) + tan ~*x + C.

the non-existent graph is conventionally styled an imaginary curve. Illustrations

62 to 64.

For a geometrical interpretation of >/ 1, see Lock's A Treatise on Higher Trig-

nometry, 103, 1897 ;
consult Chrystal's Algebra, Part I., Chapter XII., and Merriman

and Woodward's Higher Mathematics, Chapter VI., for the algebra of complex numbers.

Do not confuse irrational with imaginary quantities. In the former case, even if

we cannot obtain the absolutely correct value, we can get as close an approximation
as ever we please ;

in the latter case, we cannot even say that the imaginary quantity

is entitled to be called "a quantity ".
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Cases iii. and iv. seldom occur in actual work. If, therefore,

the denominator of any fractional differential can be resolved into

factors, the differential can be integrated by one or other of these

processes..

The remainder of this chapter will be mainly taken up with

practical illustrations of integration processes. A few geometrical

applications will first be given because the accompanying figures

are so useful in helping one to form a mental picture of the opera-
tion in hand.

78. Areas enclosed by Curves.

Integrals.

To Evaluate Definite

ft,

1. To find the area bounded by two perpendiculars, dropped from
any two points on a curve on to the x- (or y-) axis, the portion of
the curve included betiueen these two points and the x- (or y-) axis

included between the two perpendiculars.

Let AB (Fig. 86) be any curve whose equation is known. It

is required to find the area of the

portion bounded by the curve, the

two coordinates PM, QN, and 3/JV.

The area can be approximately de-

termined by supposing the portion

PQMN cut up into small strips

(called surface elements) perpen-
dicular to the #-axis; find the area

of each separate strip on the as-

sumption that the curve bounding
one end of it is a straight line and

add the areas of all these trapezoi-

dal strips together. (Cf.
"
Approxi-

mate Integration," page 263.)

Let the surface PQMN be cut up into two strips by means of

the line LR. Join PR, RQ.

(Area PQMN) = (Area PRLM) + (Area RQNL).
But the area which is the sum of these two trapeziums is greater

than that of the figure required, namely PrqQNM. The shaded

portion of the diagram represents the magnitude of the error.

It is obvious that the narrower each strip is made, the greater

will be the number of trapeziums to be included in the calculation

FIG. 86.
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and the smaller will be the error. If we could add up the areas

of an infinite number of such strips, the actual error would become

vanishingly small. Although we are un-

able to form any distinct conception of

this process, we feel assured that such an

operation would give a result absolutely

JR ff|flg|J||||||||||
correct.

'

But enough has been said on

this matter in 69. We want to know
how to add up an infinite number of

infinitely small strips.

In order to have some concrete image
before the mind, let us find the area of

PQNM in Fig. 87. In any small strip PESM, let PM =
y,

ES = y 4- 8y, OH = x and OS = x + &x. Let SA represent the

area of the small strip under consideration.

If the short distance PE were straight, not curved, the area A
1 would be, (10), page 491.

A =
fa&x(PM + ES) &x(y + ^&y).

By making $x smaller and smaller, the ratio,

.approaches, and, at the limit, becomes equal to

U _dA _

Or, dA = y . dx. . . . (1)

In the same way, it can be shown that the differential of the

area included between the curve and the y-axis, is,

dA = x . dy (2)

Formula (1), or (2), represents the area of an infinitely small

strip. The total area (A) can be determined by integrating either

of these formulae. For the sake of simplicity, we shall confine

our attention to the former. But, before we can proceed any

further, we must know the equation to the curve.

(i.)
Let rectangular coordinates be used. In any special case,

the equation is to be solved for y, and the value of y so found is

to be substituted in equation (1). Then integrate the resulting

equation to get a general expression for an indefinite portion of

the curve. To obtain the area of any definite portion situate

between the ordinates of the extremities, we must take the sum

of all the strips determined by the lengths of the ordinates.
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For instance, the area of any indefinite portion of the curve, is

A = \y.dx+ C..... (3)

and the area of the portion whose ordinates have the abscissae a.
2

and a
A (Fig. 86) is

"

(4)

Equation (3) is an indefinite integral, equation (4), a definite

integral. The value of the definite integral is determined by the

magnitude of the upper and lower limits (see page 153). In Fig.

86, if a
lt
a

2 ,
a
a represent the magnitudes of three abscissae, such

that a., lies between a
x
and a

3 ,

A = fry.dx + C =
\'

l

y.dx + [\j .dx + C.

fa J2 J3
When the limits are known, the value of the integral is found

by subtracting the expression obtained by substituting the lower

limit in place of x, from a similar expression obtained by substi-

tuting the upper limit for x. Thus, to evaluate \2xdx between the

limits a and 6,

Jit

\b

2x . dx =
\
x2 + C

;

;
|o

or, as it is sometimes written,

Par . dx = \x* + cT =
(b* + C)

-
(a

2 + C) = V - a2
.

Plenty of examples will be given presently (see page 184).

The process of finding the area of any surface is called, in the

regular textbooks, the "
Quadrature of Surfaces," from the fact

that the area is measured in terms of a square.

EXAMPLES. (1) To find the area bounded by an ellipse, origin at the

centre. Here

.,>* + y /6 = 1 ; or, y - 5
%/(rt

a _ ^
liefer to Fig. 21, page 78. The sum of all the elements perpendicular to the

.'-axis, from OPj to OP4 ,
is given by the equation

for. when the curve cuts the i--axis, .r = a, and when it cuts the y-axis, x = 0.

The positive sign in the above equation, represents ordinates above the .r-axis.

The area of the ellipse is, therefore,

o

Substitute the above value of y in this expression and we get for the sum of

this infinite number of strips,
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which may be integrated by parts, as shown on page 168, thus

.4 = 4 -f^c v/(ft2
- a8

) + i
2sin- llC + cT.

The term within the brackets is yet to be evaluated between the limits x = a

and x = 0.

A = * 4W(<*' - a2
) +

2

sin-+ C - i<M a - O2
) + sin-'? + C

.. - .

a 2

remembering that sin 90 = 1, sin
- Jl = 90 and 2 sin

- ll = 180 = ir. The
area of the ellipse is, therefore, irab.

If the major and minor axes are equal, a = b and the ellipse becomes a

circle whose area is TTO?. It will be found that the constant always disappears
in this way when evaluating a definite integral.

A WORD OF ADVICE. The student must learn to draw his own diagrams.
If you are going to find the area bounded by a portion of an ellipse or of an

hyperbola, first plot your curve. Squared paper is cheap enough. Carefully

note the limits of your integral.

(2) Find the area bounded by the rectangular hyperbola,

xy a
; or, y ajx,

between the limits x = ^ and x = xz .

= a \
c

+ C =
a|(log.r, + C)

-
(log ^ + C)},

= a log x<ilxr
If

a?!
= 1 and xz = x, A = a logex. This simple relation appears to be the

reason natural logarithms are sometimes called hyperbolic logarithms.

After this the integration constant is not to be used at any stage of the

process of integration between limits. It has been retained in the above

discussion to further illustrate the rule (see 72) : The integration constant of

a definite integral disappears during the process of integration. Tlie absence of

the indefinite integration constant is tlie mark of a definite integral.

(3) Show that the area bounded by the logarithmic curve, x = log a, is

y - 1. Hint. Evaluate C by noting that when x 0, y = 1, A 0.

(ii.) Let polar coordinates be used. The differential of the area

is then
dA = .Vr

2
. dO. . . . . (5)

EXAMPLE. Find the area of the hyperbolic spiral between and r. See

5), page 96.

rQ = a ; dQ = - a . drjr
2
.

dA
/o 10

-
I $a . dr = - I %ar = \ar.
J -r "\- r

2. To find tlie area enclosed between two different curves. Let PABQ and

PA'B'Q (Fig. 88) be two curves, it is required to find the area PABQB'A'.
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Let /, =/i(.r) be the equation of one curve, ?/.,
= /2(#), the equation of the

other. Find separately the areas PABQMN and PA'B'QMN, by preceding
methods. The required area is, therefore,

(Area PABQB'A') = (Area PABQMN) -
(Area PA'B'QMN)

=
j . dx -

|?/2
. dx.

To find the area of the portion ABB'A', let x
l
be the abscissa of AR and x.

t

the abscissa of BS, then,

A = (V . dr = P 2

(7/,
-

J*i J*i
(6)

EXAMPLE. Show that if the curves

//
2 = 4z and 7/

2 = 2a? - a:
2
,

meet at the origin and at a point x = 8, y = 8,

=
2/ ( v/2.r - .r

a - \f
4x)dx, etc.

J

-27T

FIG. 89.

3. The area bounded by two brandies of the same curve. If the curve is

circular,

y = v'O'
2 - -r

3
),

A =
J\/(r

2 -
x*)dx -

\(- \V2 -
x*)dx, etc.

4. To find the area bounded by tlie sine curve and the x-axis for a wlwle

period (2), or for any number of wliole periods. Required the area OA * + irJB2ir

(Fig. 89). Let

?/
= sin .T

be the equation to the curve.

A = I sin x . dx = -
I cog

= -
(cos 2*-)

- cos = 0, .... (7)

for - cos2ir = - cos 360 = - 1 and cosO = 1.

It can be shown in a similar manner that the area bounded by the cosine

curve is zero. The geometrical signification of this will appear from Fig. 89.

The instrument (electrodynamometer) used for measuring the strength of

alternating electric currents, indicates the average value during half a com-

plete period, that is to say, during the time the current flows in one direction.

This is geometrically represented by the area of a rectangle Oafor, equal to the

area of the portion bounded by the sine curve OAir and the x-axis.
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Let the ordinate Afar be denoted by r and the height of the rectangle
Oabir = Oa yly

then the area of OAv is

In
- cos x =

(
- cos 180 -f cos 0)r = 2r,

o

since cos 180 = -
1,

- cos 180 = 1. Therefore,

r =
7/jir, represents the maximum current, yl

the average current.

Area of rectangle Oabir = area OAv ;
or y^v = 2r.

yl
=

2r/ir
= 0-6366r represents the average current.

The maximum current is thus obtained by multiplying the average current

by \TT, or by 1-5708.

79. Graphic Representation of Work.

Let a given volume (x) of a gas be contained in a cylindrical

vessel in which a tightly fitting piston can be made to slide

(Fig. 90). Let the sectional area

X of the piston be unity.

Now let the volume of the gas

change dx units when a slight
FIG- 90- pressure X is applied to the free

end of the piston. Then by definition of work (W),
Work = Force x Displacement;

or, dW=X.dx.
If p denotes the pressure of the gas and v the volume, we have,

dW = p.dv.
Now let the gas pass from one condition where x = x

1
to an-

other state where x x>
2

. Let the corresponding pressures to

which the gas was subjected be respectively denoted by Xl
and X

z
.

By plotting the successive values of X
and x, as x passes from x to a?

2 ,
we

get the curve ACB, shown in Fig. 91.

The shaded part of the figure represents

the total work done on the system dur-

ing the change.
If the gas returns to its original

state through another series of succes-

sive values of X and x we have the
FIG. 91. Work Diagram. curve ADB (Fig> g2)

The total WQrk

done by the system will then be represented by the area ABDx.2
xr

If we agree to call the work done on the system jwsitive, and work

done by the system negative, then (Fig. 92),

B
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IT,
- W, = (An;, M'BXfBj -

(Area
= (Area ACBD).

The shaded part in Fig. 92, therefore, represents the work done on

the system during the above cycle of changes. A series of opera-

tions by which a substance, after leaving a

certain state, finally returns to its original

condition, is called a cycle, or a cyclic

process. A cyclic process is represented

graphically by a closed curve.

The reader will notice that the work

is done on the system while x is increasing

and by the system when x is decreasing.

Therefore, if the curve is described by a

point moving round the area ACBD in
FlG " 92--Work Diagram.

(

the direction of the hands of a clock, the total work done on the

system is positive ;
if done in the opposite direction, negative.

If the diagram has several loops,

as shown in Fig. 93, the total work

is the sum of the areas of the several

loops developed by the point travel-

ling in the same direction as the

hands of a clock, minus the sum
of the areas developed when the

point travels in a contrary direction.

This graphic mode of representing

work was first used by Clapeyron.
The diagrams are called Clapeyron's
Work Diagrams. The subject is

resumed on page 208.
FIG. 93. Work Diagrams (after

Clapeyron).

80. Integration between Limits * Definite Integrals.

It is perhaps necessary to further amplify the remarks on

page 179. If f(x) denotes the first differential coefficient of /(#),

, or,

* Note the different meanings assigned to the word

and in the integral calculus.

limit" in the differential
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EXAMPLES. (1) Show 1% -*. te --*"-'-*.
.' (t

(2) Prove
[*_

a:
8

. dx = ${(3)*
-

(
-

I)
3
} 9-?,-.

One of the limits
,
or b, may become infinite or zero.

(3) { e-*.dx =\ - e-*] = -e--(-e- Q
)
= l,Jo. L -Jo

since e
~ " = and e

~ = 1.

f
06 dx

(4) Show that
/ i -^/p + 1}

= log(l + x/2).

By way of practice verify the following results :

/""/a I
17

/
2

(5) I sin x . dx = -
\

cos a; = -
(cos TT - cos 0) = 1.

o o

pr/2 /TT/4

-3) . . . 3.1 /

Jr '8
, (?t- 1) (- 3) . . . 3 .

)TT74T2~J
^

n(n-2).!.4.2

pr/2 /TT/4 /. \ ,-JT

(6) sin2* .dx = %*\ sin2* . da- = \U- - 1 ; sin2* . dx = TT.

/o Jo \* / J

Hint for the indefinite integral. Integrate by parts. Put u = sin x,

dv = sin x . dx. From (1), 74,

fsin
2
,r . dx = sin x . cos x + Jcos

2
j? . dx

;

= sin x . cos x + |(1
- sin2x)dx.

Transpose the last term to the left-hand side, and divide by 2.

.-. |"sin
2
,r . dx = $(sin x . cos x + x) + C.

rir/2 n - 1 T
71"'2

(7) I sin x .dx =
/

sin"
- 2x . d,c.

J n J

For n write 71 - 2 and show that

r*v n _ 3 ,-ir/2

/ sin " ~ 2x . dx = ^o I
sin " ~

*x . dx.

Combine the last two equations and repeat the reduction. Thus,

p/2 (n

J
8 "fe= L

when 71 is even
;

f2
. (71-1) (71 -8) ... 2 f^'2 . (7Z.-l)(7t-3) ... 2

Jo
Sm^V=:

n(n-2)./..3 J
Sm <r^- ^^27:7:3-' (2)

when 71 is odd.

(1) and (2) are useful reduction formulae.

There are some interesting properties of definite integrals

worth noting.

(i.)
It is evident that

r/'(x)dx =
/(a)

-
f(b)

= -Ff(x)dx, . . (3)

or, when the upper and lower limits of an integral are inter-

changed, only the sign of the definite integral changes. This

means that if the change of the variable from b to a is reckoned

positive, the change from a to b is negative. That is to say, if

motion in one direction is reckoned positive, motion in the

opposite direction is to be reckoned negative. To put equation (3)
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in svords, the interchange of the limits of a definite integral causes

the integral to chantje its siyn.

(ii.)
If m is any interval between the limits a and b.

[

a

f(x)dx =
[f'(x)dx

+
[

m

f(x)dx, . . (4)
J& Jm Jft

or,

(iii.)
If x is any function of a new variable y, so that f(x)dx

becomes another function of y, say <j>'(y)dy, then, when x
l
and x

are substituted for a?, y becomes yl
and y.2 respectively.

l

If a -
y be substituted for x in this expression,

[

U

Jo
f(x)dx = -

(a
-

y)dy =
(

-
y)dy.

J Jo

But neither a? nor ?/ appears in the final result, hence we may put

[f(x)dx = f/( -
a?)da?.

Jo Jo

For instance, if/(#)
= sin"a? ; /(^TT

-
a:)

= cos";r,

jr/2
pJT/2= I cos"xdx. ... (5)

EXAMPLES. Verify the following results :

(1) I '"ooeaxte = 1
;

From (1) and (2), if ?i is even,

= f
/'n*r=( -

!> ("
- a

>
' ' 3 v1 .-.

(6)
Jo n(n -

2) ... 4 . 2 2
'

o

and, if n is odd,
- 8)... 4.

o o n(n -
2) ... 5 . 3

Test this by actual integration and by substituting n = 1, 2, 3, ...

(2) f
/!l

8inw?.r = l; /^W-d . d6 = 2
.

J (i 32 J n 3

If n is greater than unity,

/ sin'".r . cos".rrf.r = ?
\ "sin"'.r . cos"

- 2
.rrf.r ; (8)

J i,
m + ?i./

if m is greater than unity,

/
'tin-He . co8wa-da- = m

~ X
/
^sin"- - V . cos"a-d.r. . . (9)

Jo m + 11J

These important reduction formulae are employed in the reduction of

either |'cos".rd.r, or fsin".rdr to an index unity, or zero.

(3) I sin a- . cos xdx = ;
/ sin'J.r . cos xdx = J.

.' o .' o
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/'T/2 -7T/2

(4) I sin x . co$?xdx = A
: ;

/ sin2x' . cos2a,YZx' = TVir.
./ Jo

In the last integration, note cosaa; = 1 - sin2*.

(5) Evaluate / sinmx. sin nxdx. By (26), page 499,
J o

2 sin nix . sin ?wj = cos(m -
n).c

- cos(w + ??)#.

.. Jsin-ww; . sin nxdx = ^co$(m
-

n)xdx -
JJcos(w + 7?

_ sin(m -
7i)j; sin(w + n)x

2(w -7ij~~ 2(r+~n)~"
Therefore, if 7/1 and ?i are integral,

,'ir

I sin mx . cos nxdx . 0.

Jo

Remembering that sin TT = sin 180 = and sin = 0, if m = n,

l
f(l

- cos 2nx)dxl

(6) Show that / cos mx . cos nxdx is zero when m and 71 are integral ;

J o

J, when m = . Hints, cos TT = cos 180 - 1, cos - 1,

2cos7;t,r . COS7M1 = cosOw - n)x + coslm + n)x.

(25), page 499.

(7) Evaluate
| asinfcc.cos Jz.dz. Ausr.
J o

2ft sn x . $n x = ?.a

(8) / cos mx . cos nxdx =
; /

sin nix . sin nxdx =
;

J - it J *

I cos mx . sin nxdx 0.
/ it

Hint. Use the results of Examples (5) and (6) ;
also note that

sin nxdx = -
(cos nx)ln.

(9) Show I co&O.dx = 2(a
2 - 62sin20)"cos e.

For a more extensive treatment of definite integrals, the reader

will have to consult some such work as that of Williamson, referred

to elsewhere.

81. To find the Length of any Curve.

To find the length of any curve whose equation is known.

This is equivalent to finding the length of a straight line of the

same length as the curve, hence the process is called the " Recti-

fication of Curves ".

(i.)
Let rectangular coordinates be used. It is required to find

the length I of an arc AB (Fig. 94), where the coordinates of A

are
(o? , yQ)

and of B, (xtn y,,). Take any two points, P, Q, on the
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curve. Make the construction shown in the figure. Then by
Euclid i., 47, if P and Q are sufficiently close,

(Chord PQY =
(to)

2 + (%)-'.

But from (1), page 12, the limit of the chord PQ is equal to that

of the arc PQ,

.-. dl (dy)* ; or, =
. dx. (1)

The differential of an arc of any plane curve, referred to rect-

angular coordinates, is equal to the square root of the sum of the

squares of the differentials of the coor-

dinates.

In order to find the length of a curve,

it is only necessary, therefore, to differ-

entiate its equation and substitute the

values of dx and dy, so obtained, in equa-
tion (1). By integrating this equation,

we obtain a general expression for the "o

length of any arc. In order to find the

length of any definite portion of the curve, we must integrate
between the limits X

Q
and x,a or y and yn as the case might be.

(ii.) Let polar coordinates be used. If the equation is

f(0, r)
= 0.

The differential of the arc is

dl = x/dr a + i*(dfff. ... (2)

The rest is the same as before.

EXAMPLES. (1) If the curve is a common parabola,

7/2
= 4.r,

.:ydy = 2adx, or (dx)
9 = y*(dy)*la

From (1), dl = x'(?/ + 4rt2)f?7//2.

Now integrate as on page 166,

I =|7/\V + 4a2
/rt + a\og(y + \

f

f+~4a*)
To find C, put y = when I = 0,

C = - a log 2rt.

*
I = & \"V + 4fl2/ + a log \l(,j + Ny +

(2) Sliow that the perimeter of the circle

C.

is -2irr. Let / be the length of the arc in the first quadrant, then

dy = x . dxjy.

See page 166.

4 x 2irr.
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(3) Find the length of the equiangular spiral, page 96, whose equation is

r = e9, or, 6 = logr/loge.

Differentiate .'. do = drjr, .: dl = \f2.dr.

.-. 2 = N/2.r + C;
when r = 0, J = 0, C = 0,

Z = \/2 . r.

(4) Show that the cardioid curve, r = a(\
- cos 0) has I = 4a sin + C.

(5) Show that the length of the cycloid,

x = r(0
- sin 0) ; y = r(l

- cos 0),

from = to e = lf is 4r(cos0 - cos^).
(6) Show that the length of the hypocycloid curve,

2/3 + 02/3
_ r2/3

?
is 6r .

Plot the curve.

82. Elliptic Integrals.

The ratio c/a (Fig. 21, page 78) is the eccentricity of the ellipse, the 'V
of 44, page 95. Therefore (Fig. 21),

c = ae ; but, c2 = a1 - b2
, .-. 62/a

2 = 1 - e2 .

Substitute this in the equation of the ellipse (7), page 79. Hence,

Therefore, the length (I) of the arc of the quadrant of the ellipse (Fig. 21) is

This expression cannot be reduced by the usual methods of integration. Its

value can only be determined in an approximate way by methods to be

described later on.

Equation (1) can be put in a simpler form by noting that x = a sin
<f>,

where
<f>

is the complement of the " eccentric
"
angle 9 (Fig. 33). Hence,

. d<b.

o

Here is called the amplitude and is written am u
; e, or, as it is sometimes

written, k, the modulus of the function is always less than unity.

The integral of an irrational *
polynomial of the second degree, of the type,

J *Ja + bx + ex2 . X . dx ; or, J.X"
. dx / \/a+ bx+ ex*-

(where X is a rational function of
a-),

can be made to depend 011 algebraic,

logarithmic, or on trignometrical functions, which can be evaluated in the

usual way. But if the irrational polynomial is of the third or the fourth

degree, the integral

J *Ja + bx + cx'z + dx* + ex* . X . dx ; or, etc.,

cannot be treated in so simple a manner. Such integrals are called elliptic

integrals. If higher powers than a;
4
appear under the radical sign, the re-

* The numbers \/2~, v/5, . . ., which cannot be obtained in the form of a whole

number or a finite fraction, are said to be irrational or surd ii inithci-s. On the contrary,

\/4, N/27, |, 17, ... are said to be rational number*.
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suiting integrals are said to be iiltni-t'lliptic or hyper-elliptic iu^v/-/i/.s. That

part of an elliptic integral which cannot be expressed in terms of algebraic,

logarithmic, or trignometrical functions is always one of three classes :

1. Elliptic integrals of tlie first class :

(2)

since .c = sin <j>.
This integral is used chiefly in the study of periodic oscilla-

tions of large amplitude. For example, the time of a complete oscillation (t)

of a simple pendulum of length /, oscillating through an angle a (less than

180) on each side of the vertical is :

/"T/2 fj,h

t s

where g is the constant of gravitation. We shall integrate this kind of

equation in Chapter V.

2. Elliptic integrals of tlie second class :

rx . i c* /i M r2

E(k, 0) =
I

^N'i _ & 5i^T2J ; or, E(k, x) =
J A/-f ~z~

' rf>r
'

' ^
just encountered in the rectification of the arc of the ellipse.

3. Elliptic integrals of tfic third class :

i'9p d<b

n(n, k, <t>)
= I \

-
7- T0 . ; or, n(, k, x)= etc., . (4)

Jo (1 + n sm
<f>) \ 1 - kz sin-ty

where n is any real number, called Legendre's parameter. If the limits of the

first and second classes of integrals are 1 and 0, instead of x and in the first case

and ir/2 and in the second case, the integrals are said to be complete. Com-

plete elliptic integrals of the first and second classes are denoted by the letters

F and E respectively. \^1 -
A^sin'fy is written A<ft- Since

<f>
= am u, x,

the sine of the amplitude ,
is written x = sn it

; \/l - 2 = en it is the

cosine of the amplitude of u and \
f
l - k'zx'z = dn u, is the delta of the am-

plitude of u. E.g., the centrifugal force (F) of a pendulum bob of mass (m)

oscillating like the pendulum just described, is,

where en t \f

gjl is the cosine of the amplitude of
t*Jgfl^in

the above elliptic

integral (Class 1).

There is a system of formulae connecting the elliptic functions to each

other ;
some of these have a certain formal resemblance to the trignometrical

functions. Thus,

d am ujdit = dfldu = v/(l
- fc

2 sin2
<f>)
= dn u, etc.

Legendre has calculated short tables of the first and second class of

elliptic integrals ; the third class can be connected with these by known
formulae. But numerical tables suitable for practical purposes are incom-

plete.*

*
I learn from Baker's Elliptic lnti'ijrola that more complete tables ;uv in

of computation.
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Mascart and Joubert have tables of the coefficient of mutual induction of

electric currents, in their Electricity and Magnetism (2, 126, 1888), calculated

from E and F above. Greenhill's The Applications of Elliptic Function*

{Macmillan & Co., 1892) is one of the most useful textbooks on this subject.

83. The Gamma Function.

It is sometimes found convenient to express the solution of a physical

problem in terms of a definite integral whose numerical value is known, more

or less accurately, for certain values of the variable. For example, there is

"Legendre's table of the elliptic integrals ; Kramp's table of the integral

e
- '

8
. dt ; Soldner's table of

/ dxllog x ; Gilbert's table of Fresnel's in-I

/> />

tegral /
cos %irv^ dv, or / sin \irv*. dv ; Legendre's table of the integral

J o

/

o o

e
- xxn ~ 1

. dx, or the so-called Gamma function, etc.

By definition, the Gamma Function, or the Second Eulerian integral, is

~oc

T(n) =
I

e
~ *xn

- l .dx...... (1)

This integral has been tabulated for all values of n between 1 and 2 to

three decimal places. By the aid of such a table, the approximate value of

all definite integrals reducible to Gamma functions can be calculated as

easily as the ordinary trignometrical, or the logarithmic functions. There

are three cases :

1. n lies between 1 and 2. (Use Table II., 84.)

2. n is a positive integer. (Use formula (4), below.)

3. n is greater than 2. (Use (4) so as to make the value of the given

expression depend on one in which n lies between 1 and 2.)

Integrate the above integral by parts, thus,
'/OB r*

I e
- xx" ,dx = nl e~ xxn - 1

. dx - e~ xx". . , (2)

Between the limits x and ,r = GO, the last term vanishes.
/GO ~<X

Hence, I e
- xxn

. dx = n
\
e~ xx ~ l

. dx
; . (3)

.' o J o

or, T(n + 1)
= nr(n) ..... (4)

If n is integral, it follows from (4), that

T(n + 1)
= 1 . 2 . 3 . . . n = n ! . . . . (5)

This important relation is true for any function of n, though n\ has a real

meaning only when n is integral.

The following are a few examples of the conversion of definite integral*
into Gamma functions. For a more extended discussion the special text-

books must be consulted.

1. r(l) - 1 ; r(2) = 1
; r(0) = oo

; r(
-

n) - oo
; r() = ^. . . (6)

2. If a is independent of .r,

~ :
. dx = r(m)

(8)
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The first member of (8) is sometimes called the First F.iiler-Um Inteyml, or tin-

t-'intction. It is written B(m, n). The Beta function is here expressed
in terms of the Gamma function. Substitute x = ay/b in the second member

r(w)r(n)
f

(ay + b)'
+ "

a'"6'T(w + 71)'

(10)

If we substitute log .r in place of logf-r-
1

), the expression on the right
becomes

xe-"*.dx = a-lm +
Vr(n + 1)....... (11)

(13)

EXAMPLES. Evaluate the following integrals:

s5.r .

r(f)

(1)
I

sinfi
.r . cos5

.r . dx. From (13), we may write this integral

3 . 2 . i . .

Mo Sinl -r -^ From ^'
r(6)

\V I . ^ . f . f . ^ . x^ ,,

2
'

5.4.3.2.1
-

- i" K ir

r/C\ K / Q
f/.r. Use (7).

(5) If

(4)/V

i

_ ( j ,.

J 1 + a-

~
sin ;//./

show that F(w) . r(l
-

in)
=

ir/sin?;?.;- ;

r(l + m) . r(l
- 7) = ;ir/sin TT./ .

Put w + 7^ = 1 in the Beta function, etc.

(6) From the preceding result show that

r(J) = '*.

84. Numerical Table of the Gamma Function.

When n has any value not lying between 1 and 2, the Gamma function

r(u) may be readily calculated by means of equation (4), as indicated in the

preceding examples. Table II., page 507, shows the value of

log I e~ *x-- 1
. dx + 10, or, log r(n) + 10,
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to three decimal places for all values of n between 1 and 2. It has been

abridged from Legendre's tables to twelve decimal places as they appear in

his Exercices de Calcul Integral, tome ii., 80, 1817.

Since T(n) is positive and less than unity for all values of n between 1

and 2, logr(?i) will be negative for such values of n. Hence, as in the ordi-

nary logarithmic tables of the trignometrical functions, the tabular logarithm
is obtained by the addition of 10 to the natural logarithm of r(n). This must
be allowed for when arranging the final result.

85. To find the Area of a Surface of Revolution.

A surface of revolution was defined, on page 108, to be a sur-

face generated by the rotation of a line about a fixed axis, called

the axis of revohition.

Let the curve APQ (Fig. 95) generate a surface of revolution

as it rotates about the fixed axis Ox. It is required to find the

area of this surface. The quadrature of

surfaces of revolution is sometimes styled

the "
Complanation of Surfaces ".

Take any point P(x, y) on the curve.

Let x receive an increment Sx = MN and

y a corresponding increment By = QR.
Draw PR and QS each equal to PQ and

parallel to ON. Let s denote the area of

the surface of revolution of the curve AP
about the #-axis and 8s the surface generated by the revolution of

PQ about the same axis. Let the length of the curve AP I and
of the increment PQ = S/.

If PR revolves about 02V, it will generate a cylinder whose

superficies is 2irPM . PR (see page 491). QS revolving about ON
will generate a cylinder whose surface is 2-n-QN . QS. Therefore,

(Surface generated by QS) ZirQN . QS

Q

(Surface generated by PR) 9xPJCiP.fi'

y + Sy

Therefore, Lt, ZirQN.QS
y

= i.

But the surface generated by the arc PQ is intermediate between

that generated by QS and by PR. Therefore,

r .(Surface generated by PQ) _ ^
. ^ &s

(Surface generated by PR) 2?^
-

-^
; or, ds = ^y . dl. . (I)

= 1;
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From (1), page 187, dl-= J(dx)* + (dy)
2

,

193

.-. as = Uiry *J(dxy + (dyy. . . (2)

If the curve revolves about the 7/-axis, similar formulae in x and

y may be deduced.

The reader may be able to reason out another way of obtaining

the above result. See Figs. 98 to 100, page 195.

EXAMPLES. (1) Find the surface generated by the revolution of the slant

side of a triangle. Hints, equation of the line OC (Fig. 96) is y = mx,

dy = mdx,

ds 2iry v'l + w2
. dx,

s = \1irm x/1 + w2
. xdx = irwa;2 >/l + w2

'

+ C.

Reckon the area from the apex, where x = 0,

therefore C = 0. If x = h = height of cone

OB and the radius of the base =r= BC, then,

TO = rjh and

s = -nWP~+T2 = 2irr x
(

Slant Height).

This is a well-known rule in mensuration.

(2) Show that the paraboloid surface generated by the revolution of the

parabola, #
2 = lax, is %ira*{(a + z)

3 '2 - a3 '2
}.

(3) Show that the surface generated by the revolution of a circle is 4irr2.

FIG. 96.

86. To find the Volume of a Solid of Revolution.

This is equivalent to finding the volume of a cube of the same

capacity as the given solid. Hence the process is named the
" Cubature of Solids ".

The notion of differentials will allow us to deduce a method for

finding the volume of the solid figure swept out by a curve rotating

about an axis of revolution. At the same

time, we can obtain a deeper insight into

the meaning of the process of integra-

tion. In order to calculate the volume

of a body we may suppose it to be re-

solved into a great number of elementary

parallel planes, each plane being part of

a small cylinder. Fig. 97 will, perhaps,

help one to form a mental picture of the FIG- 97 (after Cox).

process. It is evident that the total volume of the solid is the sum
of a number of elementary cylinders about the same axis. If Sx be

the height of one cylinder, y the radius of its base, the area of the

base is Try
2

. But the area of the base multiplied by the height of

N
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the cylinder is the volume of each elementary cylinder, that is to

say, 7ry
2&x. The less the height of each cylinder, the more nearly

will a succession of them form a figure with a continuous surface.

At the limit, when Sx = 0, the volume of the solid is

V=irly*.dx, ... (1)

where x and y are the coordinates of the generating curve and the

a?-axis is the axis of revolution.

Formula (1) could have been obtained by a similar process of

reasoning to that used in the preceding section. The abbreviated

process here given illustrates how the idea of differentials facilitates

the investigation of a complicated process.

EXAMPLES. (1) Find the volume of the cone generated by the revolution

of the slant side of the triangle in Example (1) of the preceding section.

y = mx.

dV = -n-y
12

. dx = irm^x'1 . dx.

.\V = $*m*x* + C.

If the volume be reckoned from the apex of the cone, x = 0, and, therefore,

C = 0. Let x = h and in = r/h, as before,

(Volume of the entire cone) = %irr
2h.

(2) Show that the volume generated by the revolving parabola, y
2 = 4<7,r,

is ^Try
2
x, where x = height and y radius of the base.

(3) Required the volume of the sphere generated by the revolution of a

circle, with the equation :

a-
2 + y

2
?-
2

.
(
Volume of sphere) = firr^.

87. Successive Integration. Multiple Integrals.

Just as it is sometimes necessary, or convenient, to employ
the second, third or the higher differential coefficients d2

y/dx
2

,

d'3y/dx
s

. . .
,
so it is often necessary to apply successive integra-

tion to reverse these processes of differentiation.

(a) Successive integration with respect to a single independent

variable. Suppose that it is required to reduce, d'2y/dx
2 = 2, to its,

original or primitive form. We can write

dx2 dx\
.-. dy/dx = 2\dx = 2x + CP

Again, dy =
(2a? +' CJdx ; or, y =

S(2# + CJdx,
.-. y = x* + C^x + C

2 .

In order to show that d2
y/dx

2 is to be integrated twice, we write

d2
y = 2dx2

, y =-- \\2dx
2

,
or ^dx . dx.

and hence, y = x2
+. C^x + C.>.
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Notice that there are as many integration constants as there are

symbols of integration.

Ansr.EXAMPLES. (1) Find the value of y = |'| !'""
<l-'"'.

i ^ + \V\X
* + C<c + C*.

(2\ Integrate d-s/df* = g, where g is a constant due to the earth's gravita-

tion, t the time and s the space traversed by a falling body.
.-. s =

jjgr
. dt'2 = %gt

2 + C^t + C2 ,

To find the values of the constants C
l
and C2 . Let the body start from a

position of rest, then, s = 0, t = C
a
= 0, C2

= 0. See page 163.

(b) Successive integration with respect

to two or more independent variables. In

finding the area of a curve, y =
f(x), the

same result will be obtained whether we
divide the area Oab (Figs. 98 to 100) into

a number of strips parallel to the a?-axis,

as in Fig. 98, or vertical strips, Fig. 99.

In the first case, the reader will no doubt FIG. 98. Surface Elements,

be able to satisfy himself that the area A,

in the second,

=
I x.dy;
Jo

fVJo

\

FIG. 99. Surface Elements.
J
dy for y in the last equation,

o

jv p^4=1 dx
\ dy,

Jo Jo

which is more conveniently written,

A =
[

a

['dx.dy.
Jo Jo

This integral is called a double, or sur-

face integral. It means that if we
divide the surface into an infinite number

of small rectangles (Fig. 100) and take

their sum, we shall obtain the required FIG. 100. Surface Elements,

area of the surface.

To evaluate the double integral, first integrate with respect to

one variable, no matter which, and afterwards integrate with

respect to the other.
x

If x be taken first, we find the sum of all

the rectangles formed bf the strips parallel to the .r-axis, that is to

say, we integrate between the' limits a and 0, regarding dy as a
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constant pro tern. ; we then take the sum of all the strips per-

pendicular to the ic-axis, between the limits b and 0.

When there can be any doubt as to which differential the limits

belong, the integration is performed in the following order : the

right-hand element is taken with the first integration sign on the

right, and so on with the next element.

rs ,-5

EXAMPLES. (1) Evaluate I I x . dx . dy.

Ansr. / x . dx\ y 1 = 3
/
x . dx = 3 I \y? = 7*.

J 2 L J 2 J 2 12

(2) Show /

"

/ xy
2

. dx . dy = ia
263 .

J o J o

In a similar manner, if the volume of a body is to be investi-

gated, we obtain triple, or volume integrals by supposing the

solid to be split up into an infinite number of little parallelepipeds

along the three dimensions, x, y, z. These infinitesimal figures

are called volume elements. The capacity of each little element

dx x dy x dz. The total volume, or the volume integral of the

solid is

1-\dx . dy . dz.

The first integration along the #-axis gives the area of an\

/ infinitely thin strip ;
the integration along the ^/-axis gives the

area of an infinitely thin portion of the surface, and a third in-

\ tegration along the -axis gives the sum of all these little portions

\of the surface, in other words, the volume of the body.
In the same way, quadruple and higher integrals may occur.

These, however, are not very common. Multiple integration

rarely extends beyond triple integrals.

EXAMPLES. (1) Evaluate the following triple integrals :

/4

r5 re fi rz rG r4 ,-5 r6

y0tdas.dy.da', \ yz* .dy .dz .dx;
\
yz^ .dz .dx .dy.

i J i J i J i J i J i J i J i J i

Ansrs. 2580, 1550, 1470 respectively.

(2) Show

/"
J J JO

(3) Find the area (A) of the circle x2 + y
z = r2

,
and the surface (5) of the

sphere x2- + 7/
2 + z2 = r2

, by double integration. Ansrs.

rr rv<r2 -*2
)

rr rv(>-
2 -*2) dxdy4

-*/./.

(4)

rr /-vd3 -*2
) r v (1

s - ** - 2
)

Evaluate 8 /
/

dx . dy . dz. Ansr.
J o J o Jo
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Note sin Jir
= 1. Show that this integral represents the volume of a

sphere whose equation is x2 + y
2 + z* = r2 . Hint. The "dy" integration is

the most troublesome. For it, put r2 - z2 = c, say, and use C, 76. As a

result, y v/r2 - xa -
y* + (r

2 - .r
2
)
sin

- l

{y / \/ra - x2
},

has to be evaluated

between the limits y = ^/(r
s - x2

)
and y = 0. The result is

-J(i-a
- .r

2
)*-.

The

rest is simple enough.

88. The Velocity of Chemical Reactions.

The time occupied by a chemical reaction is dependent, among
other things, on the nature and concentration of the reacting sub-

stances, the presence of impurities and other "
catalytic

"
agents,

and on the temperature.

With some reactions these several factors can be so controlled,

that measurements of the velocity of the reaction agree with theo-

retical results.

A great number of chemical reactions have hitherto defied all

attempts to reduce them to order. For instance, the mutual action

of HI and HBrO^ of H.
2
and

2 ,
of carbon and oxygen and the

oxidation of phosphorus. The magnitude of the disturbing effects

of secondary and catalytic actions obscures the mechanism of such

reactions. In these cases more extended investigations are re-

quired to make deai* what actually takes place in the reacting

system. But see 135 in Part II. Advanced.

Fuhrmann (Zeitschrift fur physikalische Chemie, 4, 89, 1889)

classifies chemical reactions into " orders
"

according as one or

more molecules are included in the reaction.

I. Reactions of the first order. Let a be the concentration of

the reacting molecules at the beginning of the action when the

time t = 0. The concentration, after the lapse of an interval of

time t, is, therefore, a -
x, where x denotes the amount of sub-

stance transformed during that time. Let dx denote the amount

of substance formed in the time dt. The velocity of the reaction

at any moment is proportional to the concentration of the reacting

substance (Wilhelmy's law), hence we have

dj= k(a-x); or, k =
\>^% c~rx - - W

where k is a constant depending on the nature of the reacting

system. Eeactions which proceed according to this equation are

said to be reactions of the first order.
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II. Reactions of the second order. Let a and b respectively

denote the concentration of two different substances in such a

reacting system as occurs, when acetic acid acts on alcohol, or

bromine on fumaric acid, then, according to the law of mass

action, the velocity of the reaction at any moment is propor-

tional to the concentration of the reacting substances. In this

case

Eeactions which progress according to this equation are called

reactions of the second order. For the integration, see page 173.

If the two reacting molecules are the same, then a = b. From

(2), therefore, we get log 1 x 1/0 = x cc. Such indeterminate

fractions are discussed on page 245.
"

It is there shown that when
a = b, this expression may be made to assume the form,

k = '

a(a -
x)'

'

This expression is also obtained by the integration on the corre-

sponding equation,

dx/dt = k(a
-

x)
2

. . .

'

. . (4)

Equation (4) is that required for reactions similar to the

polymerization of nitrogen dioxide, etc.

In the hydrolysis of cane sugar,

CiAAi + Hi
= 2C

6
H

12 6 ,

let a denote the amount of cane sugar, b the amount of water

present at the beginning of the action. The reaction is, therefore,

represented by the equation,

dx/dt =
k'(a

-
x) (b

-
x),

where x denotes the amount of sugar which actually undergoes
transformation.

If the sugar has been dissolved in a large excess of water, the

concentration of the water is practically constant during the whole

process. But b is very large in comparison with x, therefore, b - x

may be assumed constant

k = k'(b
-

x),

where k' and k are constant. Hence equation (1) should represent

the course of this reaction.

Wilhelmy's measurements of the rate of this reaction show that

the above supposition corresponds closely with the truth.
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EXAMPLE. Proceed as on page 43 with the following pairs of values of

x and t :

t = 15, 30, 45, 60, 75, ...
x = 0-046, 0-088, 0-130, 0-168, 0-206, . . .

Substitute these numbers in (1) ; show that k is constant. Make the proper

changes for use with common logs. Put a = 1.

The hydrolysis of cane sugar is, therefore, a reaction of the first

order provided a large excess of water is present.

III. Reactions of the third order. In this case three molecules

take part in the reaction. Let a, b, c, denote the concentration of

the reacting molecules of each species at the beginning of the

reaction, then,

dx/dt = k(a
-

x)(b
-

x)(c
-

x). . . (5)

Integrate this expression as on page 173, put x = when t =

, in order to find the value of C. The final equation can then be

written in the form,

,.
-

t(a
-

b) (b
-

c) (c
-

a)

where a, b, c, are all different.

This equation has been studied under various guises by Har-

court and Esson, J. J. Hood, Ostwald, etc. (See the set of

examples at the end of this section.)

If we make a = b = c, in equation (5) and integrate the resulting

expression

dx - k(a - x)* k - 1
f~ ~

dt
~ ~

BlfT^
"
^J 2ta(a

- xf
The polymerization of cyanic acid is an example of such a

change,
3CNOH = CZ

N
3
0.

3
H

S
.

Rearrange the terms of equation (7) so that,

x = a(l
- II JZatkt + 1). ... (8)

In order that we may have x = a, t must become infinite. This

means that the reaction will only be completed after the elapse of

an infinite time.

If c = b in (6), and a is not equal to b,

fc-i,
*

f
(*-*)* + log

*(*-*)!
(9)

t (a- b)*\b(b
-

x) ^b(a- x)j
See examples at the end of this section.

IV. Reactions of the fourth order. These are comparatively

rare. The reaction between hydrobromic and bromic acids is,
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under certain conditions, of the fourth order. So is the reaction

between chromic and phosphorous acids (see page 175).

The general equation for a reaction in which n molecules of the

,same kind take part, is

dx - k(a xY-
1 l~~

The intermediate steps of the integration are

_ -L+ , n . n __ _

(n
-

I) (a
-

x)
n ~ l

(n
-

l)a
n ~ 1 '

for, when x = 0, t = 0.

To find the order of a chemical reaction. Let C
l}
C

2
be the

concentration of the solution, that is to say, the quantity of re-

acting substance present in the solution, at the end of certain

times t and t
2 . From equation (10),

" =kCn
'
'''~'

1̂
= kt + constant

>

where n denotes the number of molecules taking part in the re-

action. It is required to find a value for n. From (11)

= ^; or,n-l +
logi/log'.

. (12)
t
2j Gj

Judson and Walker (Journal of the Chemical Society, 73, 410,

1898) found that while the time required for the decomposition of

a mixture of bromic and hydrobromic acids of concentration 77,

was 15 minutes; the time required for the transformation of a

similar mixture of substances in a solution of concentration 51 '33,

was 50 minutes. Substituting these values in (12),

* = 1 +
10S 3 '333 = 3-97.*
log 1-5

The nearest integer, 4, represents the order of the reaction.

The intervals of time required for the transformation of equal

fractional parts m of a substance contained in two solutions of

different concentration C
l
and C

2 , may be obtained by graphic in-

terpolation (pages 68 and 254) from the curves whose abscissae

are t
l
and t% and whose ordinates are C

l
and C

2 respectively.

Another convenient formula for the order of a reaction, is

The reader will probably be able to deduce this formula for himself

* Use the table of natural logarithms, page 520.
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(see Noyes, Zeit.f. phys. Chem., 16, 546, 1895; Noyes and Scott,

ibid., 18, 118, 1895).

The mathematical treatment of velocity equations here outlined

is in no way difficult, although, perhaps, some practice is still re-

quisite in the manipulation of laboratory results. The following

selection of typical examples illustrates what may be expected in

practical work. The memoirs referred to may be considered as

models of this kind of research.

EXAMPLES. (1) It was once thought that the decomposition of phosphine

by heat was in accordance with the equation, 4PJ3"3 = P4 + 6_H"2 ; now, it is be-

lieved that the reaction is more simple, viz., PH- = P + SH, and that the

subsequent formation of the P4 and H2 molecules has no perceptible influence

on the rate of the decomposition. Show that these suppositions respectively

lead to the following equations :

dx - ktl xV- -
fc - -

1
1

K(
-

X) ,..#=-. --_ - 1.
at t (1 x)

6

Or,

In other words, if the reaction be of the fourth order, k will be constant, and

if of the first order k' will be constant.

To put these equations into a form suitable for experimental verification,

let a gram molecules of PH5 per unit volume be taken. Let the fraction x

of a be decomposed in the time t. Hence, (1
- x}a gram molecules of phos-

phine and 3ax/2, of hydrogen remain. Since the pressure of the gas is pro-

portional to its density, if the original pressure of PH5 be pQ and of the mixture

of hydrogen and phosphine plt then,

PilPo = {(l-x)a + 3xa/2}la = 1 + Jar,

- 2
; (1

-
x)a = (3

-

.

t %t-fe
Kooij (Zeit. f. phys. Chem., 12, 155, 1892) has published the following

data :

t = 0, 4, 14, 24, 46-3, . . .

p = 758-01, 769-34, 795-57, 819-16, 865-22, . . .

Hence show that k', not k, satisfies the required condition. The decomposi-
tion of phosphine is, therefore, a reaction of the first order.

(2) Does the reaction, 2PH3
= 2P + 3//2 , agree with Kooij 's observations?

In experimental work in the laboratory, the investigator proceeds by the

method of trial and failure in the hope that among many wrong guesses, he

will at last hit upon one that will "
go ". So in mathematical work, there is

no royal road. We proceed by instinct, not by rule. E.g., we have here

made three guesses. The first appeared the most probable, but on trial proved

unmistakably wrong. The second, least probable guess, proved to be the one

we were searching for.

(3) Show that the reaction,

CH^Cl . COOff + H2
= CH, . COOff + SCI,
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in the presence of a large excess of water is of the first order. See Van't Hoffs

Studies in Chemical Dynamics (Ewan's translation), 130, 1896, for experi-

mental work.

(4) Find the order of the reaction between ferric and stannous chlorides

from the two following series of observations :

^ = 0, -75, 1, 1-5; I t2
= 0, 1, 3, 7;

x
l
x 10 = 10-0, 3-59, 4-19, 5'10 ; |

xz x 10 = 6-25, 1'43, 2-59, 3-61,

where x
lt x% denote the amounts of ferric chloride reduced in the times t

l
and

2 respectively. Use formula (13), put in and also m =
^. Ansr. Third.

In the following examples, always verify your deduction by finding the

numerical value of k when experimental data are given.

(5) Reicher (Zeit. f. phys. Chem., 16, 203, 1895) in studying the action of

bromine on fumaric acid, found that when t = 0, his solution contained 8-8 of

fumaric acid, and when t = 95, 7*87 ;
the concentration of the acid was then

altered by dilution with water, it was then found that when t 0, the concentra-

tion was 3-88, and when = 132, 3-51. Here dCljdt= (8-88 -7'87)/95 = 0-0106 ;

dC^dt= 0-00227 (page 200); Cl =(8-88 + 7 -87)/2= 8-375 ; C2 =3'7, n=l-87 in

(13) above. The reaction is, therefore, of the second order.

(6) In the absence of disturbing side reactions, arrange velocity equations
for the reaction,

2C#"3 . C0.2Ag + H . CO.2Na = CH3 . COOH + CH3 . CO^Na + CO2 + 2Ag.

Assuming that the silver, sodium and hydrogen salts are completely dissociated

in solution, the reaction is essentially between the ions :

Ag + H. COO = Ag + C02 + H,
therefore, the reaction is of the third order. Verify this from the following

data : When
t = 2, 4, 7, 11, 17, . . .

;

x x 103 = 62-25, 69-15, 75-60, 80-41, 84-99 . . .

(Noyes and Cottle, Zeit. /. phys. Chem., 27, 578, 1898.)

(7) Deduce the order of the reaction,

6FeCl.2 + KCIO, + 6HCI = 6FeCl5 + KCl + S^HO,
from the following data : O'l equivalents

* of ferrous chloride, potassium
chlorate and of hydrochloric acid are taken, then, if x denotes the quantity
of FeCl2 transformed in the time t, when

t = 5, 15, 35, 60, 170 . . . ;

x x 10 = 4-8, 12-2, 23-8, 32-9, 52-5 . . .

Ansr. Third order.since k only varies between 0-99 and 1-04 when dxjdt=k(a -
.*)'.

(Hood, Phil. Mag. [5], 6, 371, 1878 ; 8, 121, 1879 ; 20, 323, 1885
; Noyes and

Wason, Zeit. f. phys. Chem., 22, 210, 1897.)

(8) The following observations were made on the reaction :

CsH5 . SOZ . OC2H5 + CH?j
. OH = CH5OC^H- + C6H-a . S02 . OH,

t = 5, 10, 15, 25 . . .
;

x = 23-1, 41-3, 55-0, 74-0 . . .

What order of reaction gives a fairly constant value for k? (Sagrebin, Zeit. /'.

phys. Chem., 34, 149, 1900.)

* Note the distinction between "equivalent" and "molecular" amounts.



$s.i. TIM-: IMK<;i;.\L CALCULUS. 'Jo:>

(9) Schwicker (Zcit. f. /;////*. (.'//<;;/., 16, 303, 1895) has made two series of

experiments on the action of iodine on potash. In the first series he used an

excess of potash and found that when t = 2, a = 10'7 of iodine and when

t =' 6, 11, 28, 38, 08 . . . ;

x = 2-10, 2-30, 5-68, 6'50, 7'86 . . .

Hence show that reaction between iodine and excess of potash is of the second

order. In a second series of experiments, an excess of iodine was used.

a = 7'23 after the elapse of two minutes, and subsequently, when
t = 4, 8, 13, 36 . . . ;

x = 3-43, 4-33, 4-88, 5-40 ...
Show that the reaction is probably of the third order. These results led

Schwicker to the equations,
72 + 2KOH = KIO + KI + H.2O ; SKIO = 2KI + KIO3 .

(10) It is intended to investigate the rate of combination of hydrogen and

oxygen gases at 440. Assuming that the reaction is of the third order,

arrange velocity equations for the following mixtures :

(a) 2#2 + Oa ; (b) 4#2 + O2 ; (c) 2H2 + 202 .

For (a) use (7), since a = b = c
;
for (b) use (9) substituting a = 1, 6 = c = 2,

and for (c) substitute a 2, b = c 1 in (9). Then arrange the results for the

indirect determination of x, by measuring the pressure of the mixed gases as

example (1). (Compare Bodenstein, Zeit. f. phijs. Cliem., 29, 664, 1899).

89. Chemical Equilibrium Incomplete or Reversible

Reactions.

Whether equivalent proportions of sodium nitrate and potas-

sium chloride, or of sodium chloride and potassium nitrate, are

mixed together in aqueous solution at constant temperature, each

solution will, after the elapse of a certain time, contain these four

salts distributed in the same proportions. Let m and n be positive

integers, then

(m + n)NaN0.3 + (m + n)KCl = mNaCl +mKNOs + nNaNOs + nKCl ;

(m + n)NaCl + (m + n)KN03
= mNaCl + mKNO., + nNaN03 + nKCL

This is more concisely written,

NaCl + KN0
3^ NaNOz + KCL

The phenomenon is explained by assuming that the products of

the reaction interact to reform the original components simul-

taneously with the direct reaction. That is to say, two inde-

pendent and antagonistic changes take place simultaneously in

the same reacting system. When the speeds of the two opposing
reactions are perfectly balanced, the system appears to be in a

stationary state of equilibrium. This is an illustration of the

principle of the coexistence of different actions, page 52.
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The special case of Wilhelmy's law dealing with these " in-

complete
"

or reversible reactions is known as Guldberg and

Waage's law.*

Consider a system containing two reacting substances A
}
and

A
2
such that

Let a
x
and <z

2
be the respective concentrations of A

l
and A

2
. Let

x of A
l
be transformed in the time t, then by Wilhelmy's law

Further, let x' of A% be transformed in the time t. The rate of

transformation of A
2
to A^ is then

'bx'/'bt = k
2(a2

-
x').

But for the mutual transformation of a? of A
l
to A 2

and x of A
z

to ^4
19
we must have, for equilibrium,

x = - x and dx - dx' ;

or, 'bx/'bi = - k
2(a2 + x).

The net, or total velocity of the reaction is obviously the algebraic

sum of these "
partial

"
velocities, or

dx/dt = ^(fl^
-

x)
- Jc

2(a2 + x). . (1)

It is usual to write K = kjk^ When the system has attained the

stationary state dx/dt = 0. (Why ?) And
K =

(a, + x}l(al -x), . . . (2)

where x is to be determined by chemical analysis, a^ is the amount

of substance used at the beginning of the experiment, a
2
is made

zero when t = 0. This determines K. Now integrate (1) by
the method of partial fractions and proceed as indicated in the

subjoined examples.

The more important memoirs for consultation are Berthollet, Essai de

Statique Chimie, Paris, 1801-1803, or Ostwald's Klassiker, No. 74 ; Wilhelmy,

Pogg. Ann., 81, 413, 1850; Ostwald's Klassiker, No. 29; Berthelot and Gilles,

Ann. de Chim. et d. Phys. [3], 65, 385, 1862 ; 66, 5, 1862
; 68, 225, 1863

;
Har-

court and Esson (I.e.) ; Guldberg and Waage, Journ. filr praktisclie Chemie

[2], 19, 69, 1879 ; Ostwald's Klassiker, No. 104.

EXAMPLES. (1) In aqueous solution y-oxybutyric acid is converted into

7-butyrolactone and 7-butyrolactone is transformed into 7-oxybutyric acid

according to the equation,

. CH2 . CH2 . COOH^. CH2 . CH^. CH.Z . CO + HZO.

I

*
It is, of course, just as easy to consider irreversible reactions as special types

of Guldberg and Waage's law by supposing the velocity of tliQ reverse action, zero.

I have followed the subject historically.
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Use the preceding notation and show that the velocity of formation of the

lactone is,

dxldt = k^a, -
x)

- fc2 ( 2 + x), . . . . (3)

and K = kjk^ = (az + x)l(al
-

x)..... (4)

Now integrate (3) by the method of partial fractions. Evaluate the integra-

tion constant for x = when t = and show that

K ~ (

- (5)

Henry (Zeit. f. phys. Chem., 10, 116, 1892) worked with a^ = 18-23, a^ = ;

analysis showed that when dxldt = 0, x = 13-28 ; % - x = 4-95 ;
a2 + x = 13-28 ;

K = 2-68. Substitute these values in (5) ; reduce the equation to its lowest

terms and verify the constancy of the resulting expression when the following

pairs of experimental values are substituted for x and t,

t = 21, 50, 65, 80, 160 . . .
;

x = 2-39, 4-98, 6-07 7'14, 10-28 . . .

(2) A more complicated example than the preceding reaction of the first

order occurs during the esterification of alcohol by acetic acid.

CH, . COOH + C^H5 . OH^ CH3 . COOC2H5 + H. OH,
a reaction of the second order.

Let a
lt &! denote the initial concentrations of the acetic acid and alcohol

respectively, 2 ,
62 of ethyl acetate and water. Show that,

dxldt = A^K -
x) (b,

-
x)

- k2(a.2 + x) (62 + x). . . (6)

Here, as elsewhere, the calculation is greatly simplified by taking gram mole-

cules such that rtj
= !,&! = 1, 2

= 0, 62 = 0. Equation (6) thus reduces to

dxjdt = k,(l
-

x)*
- k2x*..... (7)

For the sake of brevity, write kiK^ - k2)
= m and let o, be the roots of the

equation x - 2mx + m 0. Show that (7) may be written

dxf(x
-

a) (x
-

0) = (&J
- k2)dt.

Integrate for x = when t = 0, in the usual way. Show that since

a = m + x'w2 - m and = m - \im2 - m, page 387,

1 , (m - \/m2 - m)(m + \/w2 - m -
x)

g = 2 *

The value of K is determined as before. Since

m = fc^ - fr2); m = 1/(1

Berthelot and Gilles' experiments show that for the above reaction,

fcj/fcj
= 4

;
m = I ; Vm2 - m = | ;

^(fej
- /c2)

= 0-00575; or, using common logs., K^ - fc2)
= 0*0025. The cor-

responding values of x and t were,

t = 64, 103, 137, 167 . . .
;

x = 0-250, 0-345, 0-421, 0-474 . . .
;

constant = 0-0023, 0-0022, 0-0020, 0-0021 . . .

Verify this last line. For^smaller values of t, side reactions are supposed to

disturb the normal reaction, because the value of the constant deviates some-

what from the regularity just found.

(3) Let one gram molecule of hydriodio acid in a v litre vessel be heated,

decomposition takes place according to the equation :
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Hence show that for equilibrium,

and that (1
-

2x)jv is the concentration of the undissociated acid. Put

A-j/fej
= K and verify the following deductions,

-
2ar) + x_ ' 8 _

- x
~

v*

Since, when tf = 0, a- = 0, C = 0.
.
Bodenstein (Zeit. f. phys. Clwm., 13, 56,

1894; 22, 1, 1897) found K, at 440 = 0-02, hence \'K = 0-141,

= constant,

provided the volume remains constant. The corresponding values of x and are

to be found by experiment. E.g., when ^= 15, x = '0378, constant = 0-0171 ;

and when ^= 60, x= 0-0950, constant -0-0173, etc.

(4) The "active mass" of a solid is independent of its quantity. Hence,
if c is any arbitrary constant, show that for

K2CO3 + BaSOj, <^K2S04 + BaCO3 ,
Kc = <r/(l

-
x) ;

CaCl2 + #2C2 42 %HCl + OC2O4 ,
Kc = x/(l

-
a-)

2
;

CaCOs ^ CaO + CO2 ,
Kc =

>,

where jo denotes the pressure of the gas. The first reactions take place in

solution, the latter in a closed vessel. Write down the velocity equations
before equilibrium is set up and arrange the results in a form suitable for

experimental verification.

(5) Prove that the velocity equation of a complete reaction of the first

order, A^ A 2 ,
has the same general form as that of a reversible reaction,

A- ^ A%, of the same order when the concentration of the substances is re-

ferred to the point of equilibrium instead of to the original mass.

Let | denote the value of x at the point of equilibrium, then,

dxjdt = &!(],
-

a:)
-

k^x, becomes, dx/dt = k^ct^
-

|)
- fr2 .

Substitute for k2 its value k^ct^
-

)/ when dx/dt = 0,

.-. dxfdt = Vi(l -
)/{; or

. d-xldt = fc({
-

x), . . (10)

where the meanings of a, k, k will be obvious.

(6) Show that k is the same whether the experiment is made with the

substance A lt
or A 2 .

It has just been shown that starting with A^ k ^V'i/1' starting with A 2 ,

it is evident that there is % -
| of A 2 will exist at the point of equilibrium.

Hence show

therefore, as before, k^K^ -
|)
=

Integrate the second of equations (9) between the limits t = and t = /, x = x

and x = x
x , thus,

{log((
-

a:,)
-

log({
- ara)}/^

- constant.

Show, from the following observations by Waddell (Journal of Physical

Cliemistry, 2, 525, 1898), on the reciprocal conversion of ammonium thio-

cyanate into thiourea, that it makes no difference to the value of k, in (10),

whether thiourea, or thiocyanate is used at the start.
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First, the conversion of thiocyanate into thiourea, $ 21-2/ of thiocyanate,
t = 0, 19, 38, 48, 60, . . . ;

x = 2-0, 6-9, 10-4, 12-3, 13'5, . . .

Second, the conversion of thiourea into thiocyanate, = what ?

t = 0, 38, 53, 68, 90, . . .
;

x = 81-1, 51-5, 54-4, 56-3, 65'0, . . .

Memoirs by Walker and Hambly, Journ. Chem. Soc., 67, 746, 1895 ; Walker

and Appleyard, ib., 69, 193, 1896; Waddell, I.e., 3, 41, 1899, and Kistiakovvsky,

Zfif. f. phyx. Client., 27, 258, 1898, may be consulted with reference to this

nu'thod of developing equilibrium equations.

90. Fractional Precipitation.

If to a solution of a mixture of two salts, A and B, a third

substance C, is added, in an amount insufficient to precipitate all

A and B in the solution, more of one salt will be precipitated, as

a rule, than the other. By redissolving the mixed precipitate and

again partially precipitating the salts, we can, by many repetitions

of the process, effect fairly good separations of substances otherwise

intractable to any known process of separation.

Since Mosander thus fractioned the gadolinite earths in 1843

(Hood, Phil. Mag., [5], 21, 119, 1886), the method has been ex-

tensively employed by Crookes in some fine work on the yttria

and other earths. The recent separations of polonium, radium

and other curiosities has attracted some attention to the process.

The " mathematics
"

of the reactions follows directly from the law

of mass action.

Let only sufficient C be added to partially precipitate A and B
and let the solution originally contain a of the salt A, b of the salt

B. Let x and y denote the amounts of A and B precipitated at

the end of a certain time t, then a - x and b - x will represent the

amounts of A and B respectively remaining in the solution. The

rates of precipitation are, therefore,

dx/dt = k(a
-

x) (c
-

z); dy/dt =
k'(b

-
y) (c

-
z),

where c - z denotes the amount of C remaining in the solution at

the end of a certain time t.

.'. dx/dt :dy/dt = k(a
-

x):k'(b
-

y),

or, V (
a ~ x

) =
k\ \

~
y
\

J a - x J b - y

or, k'\og(a
-

x)
= k log(6

-
y) + log C',

where log C' is the integration constant.
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To find C' put x = and y = 0, then

log a*' = logC'6*, or, C' = ak
'{b

k
.

Therefore, 1 = log(a
-

x)/a
(1)

k' log(b
-

y)/b

The ratio (a
-

x)/a measures the amount of salt remaining in the

solution, after x of it has been precipitated. The less this ratio,

the greater the amount of salt A in the precipitate. The same

thing may be said of the ratio (b
-

y)/b in connection with the

salt B.

The more k exceeds k', the less will A tend to accumulate in

the precipitate and, the more k' exceeds k, the more will A tend ta

accumulate in the precipitate. If the ratio k/k' is nearly unity, the

process of fractional precipitation will be a very long one. In the

limiting case, when k =
k', or, k/k' = 1, the ratio of A to B in the

mixed precipitate will be the same as in the solution. In such a

case, the complex nature of the " earth
"

could never be detected

by fractional precipitation.

The application to gravimetric analysis is obvious.

91. The Isothermal Expansion of Gases.

To find the work done during the isothermal* expansion of a gas.

Case i. The gas obeys Boyle's law,

pv = constant say, c.

On page 182 it was shown that the work done when a gas ex-

pands against any external pressure is represented by the product

of the pressure into the change of volume. The work performed

during any small change of volume, is

dW = p.dv..... (1)

But by Boyle's law,

p=f(v) = dv. . (2}

Substitute this value of p in (1), and

.-. dW = c . dv/v.

If the gas expands from a volume v
1
to a new volume i?

2 ,

c>gt?+ C;
* K

or, TF=clog-2 . . . (3)

* " Isothermal
" means " at a constant temperature," as pointed out on page 90.
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From (2), v
l
= c/p l

and v2
=

c/p2 , hence,

TP = clog&. . (4)
Pz

Equations (3) and (4) play a most important part in the theory
of gases, in thermodynamics and in the theory of solutions.

The value of c is equal to the product of the initial volume (v )

and pressure (p )
of the gas,

.-. W = 2-3026p Vog10
i

;

Pi
See page 520, for a numerical example.

Case ii. The gas obeys van der Waals' law,

(p + ~V -
b)
= constant, say, c'.

As an exercise prove that

(5)

This equation has occupied a prominent place in the develop-

ment of van der Waals' theories of the constitution of gases and

liquids.

Case iii. The gas dissociates during expansion. (After Nernst

and Schonflies.)

By Guldberg and Waage's law, in the reaction :

for equilibrium,

TJ.
- x xx

K. = -.-.
V V V

where (1
-

x)jv represents the concentration of the undissociated

nitrogen peroxide.

The relation between the volume and degree of dissociation is,

therefore,

Kv = z2
/(l -x). ... (6)

where x the fraction of unit mass of gas dissociated.

If n represents the original number of molecules (1
-

x)n will

represent the number of undissociated molecules and 2xn the num-
ber of dissociated molecules. If the relation pv =

c, does not vary

during the expansion, the pressure will be proportional to the num-
ber of molecules actually present, that is to say,

n : {(1
-

x)n + 2xn] = 1 : 1 + x.

O
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The actual pressure of the gas is, therefore,

p =
(1 + x)p,

and the work done is, therefore,

dW = p . dv =
(1 + x)p .dv=p.dv + xp. dv.

But dW
l
= p . dv &ud dW

2
= xp.dv, . . (7)

and W=W
1
+ WZ..... (8)

From Boyle's law, p = c/v, and (6),

. c c

Substitute this value of p in (7). Differentiate (6) and substitute

the value of dv so obtained in our last result. Simplify and

dW
2
= c(2

-
x)dxl(l -x) =

c{l + 1/(1
-

x)}dx.

Integrate TF2 = cPYl +
l

\dx,
Jx2\ 1 x/

where x
t
and x

2
denote the values of x corresponding to v

l
and v%.

.-. W2
=

c{(x,
-

Xl )
-

log(l
- OJ

2)/(1
-

x,)}.

Eind dW
l
in a similar way from (7).

W
1
= clogC^i)-

.-. W =
c(log^

+ x,
-

x,
-

log
J_l|i).

(9)

It follows from (6), that

,
and v<>

=

Substitute these values of v in (9)
~, /i ~, \\

. (10)

EXAMPLES. (1) Find the work done during the isothermal expansion of

dissociating ammonium carbamate, supposed gaseous.

NH2COONH4^2NHS + C02 .

(2) In calculating the work done during the isothermal expansion of

dissociating hydrogen iodide,

does it make any difference whether the hydrogen iodide dissociates or not ?

(3) If the force of attraction (/) between two molecules of a gas, varies

inversely as the fourth power of the distance (r) between them, show that the

work (W) done against molecular attractive forces when a gas expands into

a vacuum, is proportional to the difference between the initial and final

pressures of the gas. That is,

W^Afa-pJ, ..... (11)

where A is the variation constant of 189. By hypothesis,

/=a/r*: and, dW = f.dr,
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where a is another variation constant. (See 79.) Hence,

But r is linear, therefore, the volume of the gas will vary as r3 . Hence,
v = &r", where 6 is again constant.

But by Boyle's law, pv = constant, say, = c. Hence it follows,

W'= A(pr
-

PZ), if A = ab/3c = constant.

(4) // the work done against molecular attractive forces when a gas

expands into a vacuum, is

v9 ,

where a is constant ; v
lt
v2 , refer to the initial and final volumes of the gas,

show that "any two molecules of a gas will attract one another with a force

inversely proportional to the fourth power of the distance between them ".*

92. The Adiabatic- Expansion of Gases.

In one of the examples appended to 26, we obtained the

expression,

As pointed out on page 29, we may, without altering the value

of the expression, multiply and divide each term within the brackets

byd0. .Thus,

But (bQ/~dO)p is the amount of heat added to the substance at a

constant pressure for a small change of temperature ;
this is none

other than the specific heat at constant pressure, usually written

Cp . Similarly (&Ql"bO), is the specific heat at constant volume,

written Cv .

P . . . (3)

This equation tells that when a certain quantity of heat is added

to a substance, one part is spent in raising the temperature while

the volume changes under constant pressure, and the other part is

* For the meaning of a/v
2

,
see van der Waals' equation.

f The substance is supposed to be in such a condition that no heat can enter or leave

the body during the expansion. The temperature, therefore, may change during the

operation.
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spent in raising the temperature while the pressure changes under

constant volume.

For an ideal gas obeying Boyle's law,

pv = Re.

.-. v/B = (Wftp); p/B = (Wftv).

Substitute these values in (3),

.-. dQ = Cpp . dv/R + Cvv . dp/R.
Divide through by = pv/R, and,

^ = C*L + a.*. (4)
v p

By definition, an adiabatic change takes place when the system
neither gains nor loses heat, that is to say, dQ = 0.

The ratio of the two specific heats CP/CV is a constant, usually
written y.

Cn dv dp n fdv Cdv
.-.

-
.
--|_^c=0; or, yl + I-J:

= constant.
Cv v p J v J p

or, ylogv + logp = constant; or, log^Y + logp = constant,

.-. log(pv
y
)
= constant; or, pvy = constant. . (5)

A most important relation in the theory of thermodynamics.

By integrating between the limits pv p2
and v

lt
v
2

in the

above equation, we could have eliminated the constant and ob-

tained

a-^Y' .... (6)
PI W

a useful form of (5).

Substituting v
l
= O

lR/pl
and v

z
= G^RIp^ in (6),

PI PI

and from (6)
?i = l ..... (8)

Equation (6), in words, states that the- adiabatic pressure of a

gas varies inversely as the yth power of the volume. Equation

(8) affirms that for adiabatic changes, the absolute temperature of

a gas varies inversely as the (y
-

l)th power of the volume. Two
well-known thermodynamic laws.

To find the work performed when a gas is compressed under

adiabatic conditions.

From (5), if we write the constant c',

p = c'/v
y

.
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Since the work done when the volume of a gas is compressed from

v
l
to v

2
is (page 182),

f"a

fa dv
p.dv--\ c'

;

J' vy

-
(y

-
1)

=
T^Tl^l

-
^T

From (5), c' = p^oj = p2vj. We may, therefore, represent this

relation in another form, viz. :

and p2v.2
= #0

2 ,
are the isothermal equations forIf

and
2 ,

we may write,

which states in words, that the work required to compress a mass

of gas adiabatically while the temperature changes from 6-f to #
2 ,

will be independent of the initial pressure and volume of the gas.

In other words, the work done by a perfect gas in passing along

an adiabatic curve, from one isothermal to another, is constant

(see page 92), and independent of the path.

EXAMPLES. (1) From (5), show that p^v-^ = p^v^ and hence deduce the

formula,

7 = (iog.Po
-

log^i)/(logJP2
- lo

g^i).
(
12

)

used by Clement and Desormes in their determinations of the ratio of the

specific heats of some of the gases (Journ. de Physique, 89, 333, 1819). The

experimental details are given in most textbooks. Here it is only necessary

to know that pl
v

l
= p^v under the conditions of the experiment. The numeri-

cal values of p , plt p2 ,
are determined by experiment.

(2) To continue illustration 3, 18, page 44. We have assumed Boyle's

law ppQ = pop. This is only true under isothermal conditions. For a more

correct result, use (5) above. Write the constant c. For a constant mass (m)

of gas, m =
pv, hence show that for adiabatic conditions,

Hence deduce the more correct form of Halley's law :

for the pressure (p) of the atmosphere at a height h above sea-level. Atmos-

pheric pressure at sea-level = p .

(3) From the preceding example proceed to show that the rate of diminu-
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tion of temperature (6) is constant per unit distance (h) ascent. In other

words, prove and interpret

-0 =
^-.^

U (15)R y

(4) Lummer and Pringsheim have used the last of equations (7), for

evaluating 7 by allowing a gas at pressure p- to expand suddenly to another

pressure p2 and measuring the instantaneous rise of temperature B1
to 2 .

Hence, given the numerical values of plt p2 , 6V 2 ,
how would you calculate

the numerical value of 7? Ansr. 7 = lo&(piJPiM$o&(pilPz)
-

logi^/flaK-

(5) To continue the discussion at the end of 26, Examples (4) to (8).

Suppose the gas obeys van der Waals' law :

-
b)
= RB, . . . . (16)

where R, a, b, are known constants. The first law of thermodynamics may
be written

dQ = Cv . de + (p + alv*)dv, .... (17)

where the specific heat at constant volume has been assumed constant. To

find a value for Cp ,
the specific heat at constant pressure. Expand (16). Differ-

entiate the result. Cancel the term 2a& . dvjv* as a very small order of magni-
tude

( 4). Solve the result for dv. Multiply through with p + ajv"
2
. Since

a/v
2 is very small, show that the fraction (p + a/v

2
)l(p

-
ajv

2
)
is very nearly

1 + 2a/jiw
2
(pages 8 and 224). Substitute the last result in (17), and

Obviously the coefficient of d6 is equivalent to (dQ/?)6)p, i.e., to Cp ;
while the

coefficient of dp is (dQj'dp)0. By hypothesis Cv is constant,

For ideal gases a = 0, and we get Mayer's equation, 26.

For. Air. Hydrogen.

llc, : : : ST18 ST8"

7 (calculated) . 1-40225 1-40007 1-2907 From (18) ;

7 (observed) 1-403 1-4017 - 1-2911 /Mean of d
f
ta in M^er

'

s

{Kinetic Theory of Gases.

(6) Show van der Waals' equation for adiabatic conditions is

-b)y = Be..... (19)

93. The Influence of Temperature on Chemical and

Physical Changes van't Hoffs Formula.

In example 7, page 61, we have obtained the formula,

(S).-(l)...... *
by a simple process of mathematical reasoning. The physical

signification of this formula is that the change in the quantity
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of heat communicated to any substance per unit change of volume

at constant temperature, is equal to the product of the absolute

temperature into the change of pressure per unit change of tem-

perature at constant volume.

Suppose that 1 - x grams of one system A is in equilibrium

with x grams of another system B. Let v denote the total volume

and the temperature of the two systems. Equation (1) shows

that (bQIDv)e is the heat absorbed when the very large volume of

system A is increased by unity at constant temperature 0, less the

work done during expansion. Suppose that during this change of

volume, a certain quantity (tto/dv)* of system B is formed, then, if

q be the amount of heat absorbed when unit quantity of the first

system is converted into the second, the quantity of heat absorbed

during this transformation is q(bxfbv)t. q is really the molecular

heat of the reaction.

The work done during this change of volume is p . dv
;
but dv

is unity, hence the external work of expansion is p. Under these

circumstances,

/<te\ fiQ\ fip\ 0^p
- p^O

U).
=
(*).-*

'
(5).

- p ' -*&- w
from (1). Now multiply and divide the numerator by

2
(see

integrating factors, pages 58 and 120). .-
If, now, ?i

x
molecules of the system A and n.

2
molecules of the sys-

tem B take part in the reaction, we must write, instead of pv = RO,

pv = BOfo^l -
x) + n

2x] ; or, p/e = E\n^ + (n.2
-
n^x^v.

(The reason for this is well worth puzzling out.)

R .

Substitute this result in equation (9) and we obtain

PR.

By Guldberg and Waage's statement of the .mass law,

.-. log K + (n.2
- n^ log v = n.2 log x - w

x log (1
-

x).

Differentiate this last expression with respect to 0, at constant

volume and with respect to v, at constant temperature,
n. - H

(

\ 1 - x x 1 - x
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Introduce these values in (4) and reduce the result to its simplest

terms, thus,

/x
*

This fundamental relation expresses the change of the equilibrium

constant K with temperature at constant volume in terms of the

molecular heat of the reaction.

Equation (5), first deduced by van't Hoff, has led to some of

the most important results of physical chemistry.

Since E and are positive, K and q must always have the

same sign. Hence van't Hoff's principle of mobile equilibrium

follows directly, viz. :

If the reaction absorbs heat, it advances with rise of tempera-
ture ;

if the reaction evolves heat it retrogrades with rise of tem-

perature ; and if the reaction neither absorbs nor evolves heat, the

state of equilibrium is stationary with rise of temperature.

According to the particular nature of the systems considered q

may represent the so-called heat of sublimation, heat of vaporiza-

tion, heat of solution, heat of dissociation, or the thermal value of

strictly chemical reactions when certain simple modifications are

made in the interpretation of the " concentration
"
K.

If, at temperature O
l
and

2 ,
K becomes

jfiTj
and K

2 ,
we get, by

the integration of (5),

The thermal values of the different molecular changes, calculated

by means of this equation, are in close agreement with experiment.
For instance :
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NUMERICAL EXAMPLE. Calculate the heat of solution of mercuric chloride

from the change of solubility with change of temperature. If c
lt % denote the

solubilities corresponding to the respective absolute temperatures 0, and 2 ,

Cj
= 6-57 when ^ = 273 + 10 ;

c2 = 11-84 when 2
= 273 + 50.

Since the solubility of a salt in a given solvent is constant at any fixed tem-

perature, we may write c in place of the equilibrium constant K. From (6),

therefore,

qfl 1\. .
. 11-84

qf
I 1 \

U "
ej

'
" 10g

fr57
=

21,283

~
323>

.-. q = log 1-8 x 45,704-5 = 2,700 (nearly) ;

q (observed) = 3,000 (nearly).

Use the Table of Natural Logarithms, Chapter XIII., for the calculation.

Le Chatelier has reversed the above calculations, and, as the

result of more extended investigations, he has enunciated the im-

portant generalisation :

"
any change in the factors of equilibrium

from outside, is followed by a reversed change within the system".
This rule, known as Le Chatelier s theorem, enables the chemist to

foresee the influence of pressure and other agents on physical and

chemical equilibria.

For further light on this important subject, consult Le Chatelier's Les

Equilibres Chimiques, 1888 ; Zeit. f. phys. CJiem., 9, 335, 1892
;

Bancroft's

The PJiase Rule, 1897.

The beginner will find it worth while to write out the leading assumptions
introduced as premises in deducing van't Hoff's formula.
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CHAPTEE V.

INFINITE SERIES AND THEIR USES.

" In abstract mathematical theorems, the approximation to truth is-

perfect. ... In physical science, on the contrary, we treat of

the least quantities which are perceptible." W. STANLEY JEVONS,

94. What is an Infinite Series?

MARK off a distance AB of unit length. Bisect AB at Ov bisect

O^B at
2 , 2

B at
8 ,

etc.

A O
l 2 3 4 B.

By continuing this operation, we can approach as near to B as we

please. In other words, if we take a sufficient number of terms

of the series,

A0
l + O^ + 2 3 + . . .

,

we shall obtain a result differing from AB by as small a quantity
as ever we please.

This is the geometrical meaning of the infinite series of terms,

1 = 4 + (i)
2 + (I)

3 + (i)
4 + ... to infinity. . (1)

Such an expression, in which the successive terms are related

according to a known law, is called a series.

When the sum of an infinite series approaches closer and closer

to some definite finite value, as the number of terms is increased

without limit, the series is said to be a convergent series. The

sum of a convergent series is the "
limiting value

"
of 6. On

the contrary, if the sum of an infinite series obtained by taking a

sufficient number of terms can be made greater than any finite

quantity, however large, the series is said to be a divergent series.

For example,
l + 2 + 3 + 4+...to infinity. . . (2)

Divergent series are not much used in physical work, while con-

verging series are very frequently employed.*

* A prize was offered in France some time back for the best essay ou the use of

diverging series in physical mathematics.
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Several tests for discriminating between convergent and diver-

gent series are described in the regular textbooks on algebra. To

simplify matters, I shall assume the series discussed in this work

satisfy the tests of convergency. It is necessary to bear this in

mind, otherwise we may be led to absurd conclusions.

Let S denote the limiting value or sum of the converging
series.

S = a + ar + ar2 + . . . + ar" + arn+l + ... ad inf. (3)

Cut off the series at some assigned term, say the rath, i.e., all terms

after ar'
1 ~ l are suppressed. Let s

tl
denote the sum of the n terms

retained,
- the sum of the suppressed terms. Then,

s u
= a + ar + ar'2 + . . . + ar"" 1

. . . (4)

Multiply through by r,

rsn = ar + ar'2 + ar* + . . . + ar".

Subtract the last expression from (4),

*(!
-

r)
= a(l

-
r") ; or, s n = hj-^X (5)

Obviously we can write series (3), in the form,

8m+:

vn (6)

The error which results when the first n terms are taken to repre-

sent the series, is given by the expression

<rw
= S -

s,,

This error can be made to vanish by taking an infinitely great

number of terms, or,

Lt n = :,<r, t

= 0.

1 - rn a ar'
1

But, .. -*- J
j-^

- j.
When n is made infinitely great, the last term vanishes,

,.*...-, -a

The sum of the infinite series of terms (3), is, therefore, given

by the expression

Series (3) is generally called a geometrical series.

To determine the magnitude of the error introduced when only
a finite number of terms of an infinite series is taken. Take the

infinite number of terms,

S = l = 1 + r + r* + . . + r"- 1 + (8)
I - r I - r
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The error introduced into the sum S, by the omission of all terms

after the nth, is, therefore,
n-n

r.- - 0)

When r is positive, a-n is positive, and the result is a little too

small
;
but if r is negative

which means that if all terms after the nth are omitted, the sum
obtained will be too great or too small, according as n is odd or

even.

EXAMPLES. (1) Suppose that the electrical conductivity of an organic

acid at different concentrations has to be measured and that the first

measurement is made on 50 c.c. of solution of concentration c. 25 c.c. of

this solution are then removed and 25 c.c. of distilled water added instead.

This is repeated five more times. What is the then concentration of the acid

in the electrolytic cell ?

Obviously we are required to find the 7th term in the series

c{i + i + a)
2 + (i)

3 + ...},
where the nth term is c(\}

n - l
. Ansr. ()

6
c.

(2) A precipitate at the bottom of a beaker containing Fc.c. of mother

liquid is to be washed by decantation, i.e., by repeatedly filling the beaker up
to say the Fc.c. mark with distilled water and emptying. Suppose that the

precipitate retains v c.c. of the liquid in the beaker at each decantation, what

will be the percentage volume of mother liquor about the precipitate after

the nth emptying, assuming that the volume of the precipitate is negligibly

small ? Ansr. lOOfa/ F)
M * l

.

Hint. The solution in the beaker, after the first filling, has vjV c.c. of

mother liquid. On emptying, v of this v/V c.c. is retained by the precipitate.

On refilling, the solution in the beaker has (v
2
/F)/Fof mother liquor, and so

we build up the series,

95. Soret's Diffusion Experiments.

These experiments will serve to illustrate the use that may be

made of a geometrical series in the study of natural phenomena.
The density of a gas may be determined by comparing its rate

of diffusion with that of another gas of known density. If rv r
2

be the rates of diffusion of two gases of known densities p1
and

p.,

respectively, then by Graham s law,

r
i Vft = r

-2 Vp7 ... (1)



55 ?:,. INFINITE SERIES AND THEIR USES. 221

The method is particularly useful for finding the density of

such a gas as ozone, which cannot be prepared free from admixed

oxygen. Soret based his classical method for finding the density

of this gas on the following procedure (Ann. d. Chim. et d. Phys. t

[4], 7, 113, 1866 ; 13, 257, 1868).

A vessel A, containing v volumes of ozone mixed with oxygen,
was placed in communication with another vessel B, containing

oxygen only, for a definite time t. Soret found that the volume

(v) of ozone diffusing from A to B was proportional to the differ-

ence in the quantity of ozone contained in the two vessels at the

commencement of any interval of time. By Graham's law this

quantity is also inversely proportional to the square root of its

density.

If the vessel A, originally containing V
Q
volumes of ozone, loses

v volumes, the amount dv which diffuses in the next interval of

time dt, will be proportional to the difference in the volumes of

ozone contained in the two vessels, that is to say, (v
-

v)
-

v,

hence,

dv =
-^(r

-
2v)dt, ... (2)

where a is a constant depending on the nature of the apparatus
used in the experiment.

At the commencement of the first interval of time B contained

no ozone, therefore, if v
1
denotes the quantity of ozone in B at the

end of the first interval of time,

v
i
=
-*T*J* ; .... (3)
vp

at the end of the second interval,

v
2
= v

l + v^l -
2v!/vQ) ;

at the end of the third interval,

v
3
= v

l
+ t?j(l

- 2V ) + v
i(
l -

2^/t; )
2

;

and at the end of the nth interval,

v,,
= v

l + v^l
-

Sfy/v,,) + + ^iC1
-

2^/Vo)
1

. (4)

The volume of ozone in the upper vessel at the end of n in-

tervals of time dt, is the sum of the geometrical series (4) containing
n terms. From (5), page 219,

Thus, the volume of the gas in B, at the end of a given time, is



222 HIGHER MATHEMATICS. $ 96.

proportional to v alone, or, for the same gas with the same

apparatus for the same interval of time,

vjv = constant.

With different gases, under the same conditions, any difference in

the value of vJvQ
must be due to the different densities of the

gases.

The mean of a series of experiments with chlorine (density,

35 -5), carbon dioxide (density, 22), and ozone (density, ?), gave
the following numbers :

CO2 . Ozone. C/2.

vjv . . . 0-29, 0-271, 0-227.

Comparing chlorine with ozone, let x denote the density of

ozone,
x = (0-227/0-271)

2 x 35-5 = 24-9,

which agrees with the triatomic symbol 3
.

EXAMPLE. Show that if the time is taken infinitely long the value of

vn]v approaches unity.

96. Approximate Calculation by Means of Infinite Series.

The reader will, perhaps, have been impressed with the fre-

quency with which experimental results are referred to a series

formula of the type :

y = A + Ex + Cx2 + Dz3 + . . ., . . (1)

in physical or chemical textbooks.*

The formula has no theoretical significance whatever. In the

absence of any knowledge as to the proper mathematical expres-

sion of the " law
"

connecting two variables, this formula is

adopted in the attempt to represent the corresponding values

of the two variables by means of a mathematical expression.

A, B, C, . . . are constants to be determined from the ex-

perimental data by methods to be described later on.

There are several interesting features about formula (1).

1. When the progress of any physical change is represented by
the above formula, the approximation is closer to reality the greater

the number of terms included in the calculation. This is best

shown by an example.
The specific gravity s of an aqueous solution of hydrogen

*
I have counted over thirty examples in the first volume of MendeleefFs The

Principles of Chemistry and more than this number in Preston's Theory of Heat.
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chloride is an unknown function of the amount of gas p per cent,

dissolved in the water. (Unit, water at 4 =
10,000.)

The first two columns of the following table represent cor-

responding values of p and s, determined by Mendeleeff. It is

desired to find a mathematical formula to represent these results

with a fair degree of approximation, in order that we may be able

to calculate p if we know s, or, to determine s if we know p. Let

us suppress all but the first two terms of the above series,

s = A + Bp,
where A and B are constants, found, by methods to be described

later, to be A = 9991'6, B = 4943. Now calculate s from the

given values of p by means of the formula,

s = 9991-6 + 49-43p, ... (2)

and compare the results with those determined by experiment.
See the second and third columns of the following table :
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The term 0*0571p
2 is to be looked upon as a correction term*

It is very small in comparison with the preceding terms.

If a still greater precision is required, another correction term

must be included in the calculation, we thus obtain

y = A + Bx + Cx2 + Dx*.

Such a formula was used by Thorpe and Tutton (Journ. Chem.

Soc., 57, 559, 1890 ; Thorpe and Kucker, Phil. Trans., 166, ii.,

405, 1877), to represent the apparent expansion of phosphorous
oxide in a glass volumeter. They referred their- results to the

formula :

v = l + 0-008882,40 + (
-

0-000000,13873)^ + 0'000000,03844603
.

The calculated agreed very closely with the observed results,

(Thorpe and Tutton's zero temperature was here -
27'1.)

Hirn used yet another term, namely,
v = A + Bo + Ce2 + De* + Ee*,

in his formula for the volume of water, between 100 and 200.

Here 4 = 1,

B =
. 0-000108,67875 ;

D = 0-000000,002873,0422 ;

C = 0-000003,007365,3 ;
E = - 0-000000,000006,646703,1.

(Ann. d. Ch. et d. Ph. [4], 10, 32, 1867.)

The logical consequence of this reasoning, is that by including

every possible term in the approximation formula, we should get

absolutely correct results by means of the infinite converging series :

y = A + Bx + Cx2 + Dx* + Ex* + Fx* + . . . + ad infin.

It is the purpose of Maclaurin's theorem to determine values of

A, B, C, . . . which will make this series true.

2. The rapidity of the convergence of any series determines how

many terms are to be included in the calculation in order to obtain

any desired degree of approximation.

It is obvious that the smaller the numerical value of the " cor-

rection terms
"

in the preceding series, the less their influence on

the calculated result. If each correction term is very small in

comparison with the preceding one, very good approximations can

be obtained by the use of comparatively simple formulae involving

two, or, at most, three terms. On the other hand, if the number

of correction terms is very great, the series becomes so un-

manageable as to be practically useless.

Equation (1) may be written in the form,

y = A(l + bx + ex2 + ...),. . . (4)

where A, b, c, . . . are constants.
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As a general rule, when a substance is heated, it increases in

volume ;
its mass remains constant, the density, therefore, must

necessarily decrease. But,

mass = volume x density, or, m =
pv.

The volume of a substance at is given by the expression

V = V
Q(l + aO),

where V
Q represents the volume of the substance at C., a is the

coefficient of cubical expansion. Therefore,

P /p
= v/v = v (l + aO)/vQ

= 1 + aO.

.'. p = pft/(l + a0).

True for solids, liquids, and gases. For simplicity, put p ()

= 1. By
division, we obtain

p = 1 - a.0 + (aO)'
2 -

(a0)
3 + . . .

For solids and some liquids a is very small in comparison with

unity. For example, with mercury a = 0*00018. Let 6 be small

enough

p = I - 0-000180 + (0-000180)
2 - ...

= 1 - 0-000180 + 0-000000,03240*

If the result is to be accurate to the second decimal place (1 per 100),

terms smaller than O'Ol should be neglected ;
if to the third decimal

place (1 per 1000), omit all terms smaller than O'OOl, and so on.

It is, of course, necessary to extend the calculation a few decimal

places beyond the required degree of approximation. How many,

naturally depends on the rapidity of convergence of the series.

If, therefore, we require the density of mercury correct to the

sixth decimal place, the omission of the third term can make no

perceptible difference to the result. See the determination of the

numerical value of TT, page 230.

EXAMPLES. (1) If fe denotes the height of the barometer at C. and
h its height at 6, what terms must be included in the approximation

formula,
h = fe (l + 0-000160), (5)

in order to reduce a reading at 20 to the standard temperature, correct to

1 in 100,000?

(2) Verify the first half-dozen approximation formulae, page 486.

(3) In accurate weighings a correction must be made for the buoyancy of

the air by reducing the "observed weight in air" to "weight in vacuo ".* Let

* A difference of 45 mm. in the height of a barometer during an organic combustion

analysis, may cause an error of 0'6 / in the determination of the (702 ,
and an error of

0-4 / in the determination of the JIZ0. See Crookes, "The Determination of the

Atomic Weight of Thallium," /'hit. 7Vr<//*., 163,277, 1874.

P
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W denote the true weight of the body (in vacuo), w the observed weight in air,

p the density of the body, ^ the density of the weights, p2 the density of the

air at the time of weighing. Hence show that if

Pi

Pi P

or, W=w + 0-0012w(l/P
-

l/Pl ), .... (6)

which is the standard formula for reducing weighings in air to weighings in

vacuo. The numerical factor represents the density of moderately moist air

at the temperature of a room under normal conditions.

(4) If a denotes the coefficient of cubical expansion of a solid, the volume
of a solid at any temperature 6 is, v = v (I + a0), where VQ represents the

volume of the substance at 0. Hence show that the relation between the

volumes, ^ and v2 ,
of the solid at the respective temperatures of 0j and 2 is

v
l
= v2(l + aQ

l
- a02). (7)

Why does this formula fail for gases ?

(5) Since

_l_ = :L + . + + . ..,

the reciprocals of many numbers can be very easily obtained correct to many
decimal places. Thus

1 =
1 JL 3 9

97
~

100 - 3
~

100
+

10,000
+

1,000,000
+

= -01 + -0003 + -000009 + . . .

(6) We require an accuracy of 1 per 1,000. What is the greatest value of

x which will permit the use of the approximation formula

(1 + x)
3 = 1 + 3x ?

(7) From the formula

(1 + x)
n - 1 nx,

calculate the approximate values of V99, I/ Vf-02, (1-001)
3

, vT-05, mentally.
Note n may be positive or negative, integral or fractional.

97. Maclaurin's Theorem.

There are several methods for the development of functions

in series, depending on algebraic, trignometrical, or other pro-

cesses. The one of greatest utility is known as Taylor's theorem.

Maclaurin's * theorem is but a special case of Taylor's.

Maclaurin's theorem determines the law for the expansion of a

function of a SINGLE variable in a series of ascending powers of

that variable.

* The name is here a historical misnomer. Taylor published his series in 1715.

In 1717, Stirling showed that the series under consideration was a special case of

Taylor's. Twenty-five years after this Maclaurin independently published Stirling's

series.
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Let the variable be denoted by x, then,
=

/(*).

Assume that f(x) can be developed in ascending powers of x,

say,

u =f(x) = A + Ex + to2 + Dx* +...,* . . (1)

where A, B, C, D . . . ,
are constants independent of #, but de-

pendent on the constants contained in the original function.

It is required to determine the value of these constants, in order

that the above assumption may be true for all values of x.

By successive differentiation of (1),

_ . (2)dx dx

4*.W*>, aC + a.SDx + . . .; . (3)dx2 dx

*_#"(?)- 2. 3. D+. (4)
dx* dx

By hypothesis, (1) is true whatever be the value of x, and,

therefore, the constants A, B, C, D, . . . are the same whatever

value be assigned to x. Now substitute x = in equations (2), (3),

(4). Let v denote the value assumed by u when x = 0. Hence,
from (1),

v=f(0) = A, .'.A = v, . (5)

from (2),
-

from(3),

from w, g-rm-i.i.aD, .-^ = i.
u
/
n
(0)

" means that /(a?) is to be differentiated n times, and x

equated to zero in the resulting expression.

Substitute the above values of A, B, C, . . .
,
in (1) and we get

dv x d'2v x2 dBv x'3 ,c .

"-^ai +
j|n

+
ii

+ v (6)

The series on the right-hand side is known as Maclaurin's Series.

From (5), the series may be written,

=
/(O) + /(O)? +

/"(O)^
+ /"(0)

1^3
+ . (7)

* Note the resemblance between this expression ami (1) of the preceding section.
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98. Useful Deductions from Maclaurin's Theorem.

The following may be considered as a series of examples of the

use of the formula obtained in the preceding section. Many of the

results now to be established will be employed in our subsequent
work.

1. Tlie binomial tlworem. In order to expand any function by Maclaurin's

theorem, the successive differential coefficients of u are to be computed and x

then equated to zero. This fixes the values of the different constants.

Let u = (a + x)
n

,

dujdx = n(a + x)
n - 1

,
.'. / (0)

= nan - J
;

dtuldx* = n(n -
1) (a + x)"-

2
,

.'. /"(O) = n(n -
l)a

n ~ 2
;

d3
uldx* = n(n -

1) (n
-

2) (a + a;)"-
3
, .-. /"(O) = n(n -

1) (n
- 2)a"-

:i

,

and so on. Now substitute these values in Maclaurin's series (6),

(a + x) = a +
7V -

i* +
"fo-^oH

-
*j* + . . . ,

. (1)

a result known as the binomial series, true for positive, negative, or fractional.

values of n. See page 22.*

EXAMPLES. (1) Prove that

(a
-

ar)
= a - -a~ lx +

n
^
n ~ 1^- 2

q-
2 - ... . (2)

When n is a positive integer, and n = m, the infinite series is cut off at a

point where n - m = 0. A finite number of terms remains.

Establish the following results :

(2) (1 + x2
)

1 '2 = 1 + x2
/2

- a-
4
/8 + 6

/16
- ...

(3) (1
- x2

)-
1 /2 = 1 + z2

/2 + 3x4
/8 + 5^/16 + . . .

(4) (1 + x2
)

~ l = 1 - x2 + x4 -
. . .

Verify this last result by actual division.

2. Trignometrical series. Suppose
u = f(x) = sin x.

Proceed as before. Note that

<i(sin x)jdx = cos x
t d(cos x)ldx = - sin x, etc.

.-. sinO = 0,
- sinO = 0, cosO = 1,

- cosO = - 1.

Hence, sin, .
\
- * +

* -
g + . . . (3)

A result known as the sine series.

* In the proof that dx/dx = nxn ~ l
,
we have assumed the binomial theorem.

The student may think we have worked in a vicious circle. This need not be. The

result may be proved without this assumption. Let

y = XM
,
X

1
= X + Sx, yj

= y + Jy.

by division. But Lt$x = Qxl
= x.

'

-3-
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' In the same way, show that

cosx = l- *L + -!*
+ ...... (4)

This is the cosine series.

These series are employed for calculating the numerical values of angles
between and |w. All the other angles found in "

trignometrical tables of

sines and cosines," can be then determined by means of the formulae,

sin(r -
x) = cos a?

; cos(ir
-

x) = sinx,

of page 499. For numerical examples, see page 497.

Now let u = f(x) = tan x.

From page 499, .. u cos x = sin x.

By successive differentiation of this expression, remembering that w
x
= duldx,

21., = d^/fZ.r
2

, . . . , as in 8,

.. z^cosx - usiux = coax.

.*. w^cosx - 2zt
1
sinx - ucosx = - sinx.

.. u3cosx - &izsiux -
3ttjCosx + usiux = - cosx.

By analogy with the coefficients of the binomial development (1), or Leibnitz'

theorem, 20,

?*ncosx - -Un-fimx - -5 '-"- ^Mn _ 2cosx + . . . = nth derivative sinx.

Now find the values of u, ult
uzt us , ... by equating x = in the above

equations, thus,

/(O) =/"(<>)= ... =0

Substitute these values in Maclaurin's series (7), preceding section. The

result is,

The tangent series.

3. Inverse trignometrical series. Let

6 = tan - Jx.

By (3), 15 and example (4) above,

.-. dejdx = 1/(1 + x2
)
= 1 - x2 + x4 - x6 + . . .

By successive differentiation and substitution in the usual way,

tan-ix^x-^ + l- . . .
,

. .' . (6)

or, from the original equation,

6 = tan 6 - i tan :? + i tan5 -...,. . . (7)

which is known as Gregory's series. This series is known to be converging
when 6 lies between - $v and J?r.

Gregory's series has been employed to calculate the numerical valite of IT.

Let e = 45 =
|ir, . . x = 1.

Substitute in (6),

*= 1 - i i _ 1 !_.! .1 _
4 3

+
5 7

+
9 11

+
13

The so-called Leibnitz series. This is a convenient opportunity to emphasize
the remarks on the unpracticable nature of a slowly converging series. It
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would be an extremely laborious operation to calculate v accurately by means
of this series. A little artifice will simplify the method, thus,

IT /
'

1\ /I 1\ /I 1 \ TT 2 2 2

* - J_ J_ 1

8
~
173

+
5.7

+
9.11

+ *'''

which does not involve quite so much labour. Itwill be observed that the angle x

is not to be referred to the degree-minute-second system of units, but to the

unit of the circular system (page 494), namely, the radian. Suppose x = I/ s 3,

then tan -I
a; = 30 = ?r. Substitute this value of x in (6), collect the positive

and negative terms in separate brackets, thus

_L i \ / i i

/~ i c /T: ** "i" '

6

To further illustrate, we shall compute the numerical value of IT correct

to five decimal places. At the outset, it will be obvious that (1) we must

include two or three more decimals in each term than is required in the final

result, and (2) we must evaluate term after term until the subsequent terms

can no longer influence the numerical value of the desired result. Hence :

Terms enclosed in the first brackets. Terms enclosed in the second brackets.

0-57735 03 0-06415 01

0-01283 00 0-00305 48

0-00079 20 0-00021 60

0-00006 09 0-00001 76

0-00000 52 0-00000 15

0-00000 05 0-00000 02

0-59103 89 0-06744 02

.-. TT = 6(0-59103 -89 - 0-06744 02) = 3-14159 22.

The number of unreliable figures at the end obviously depends on the

rapidity of the convergence of the series (page 224). Here the last two figures

are untrustworthy. But notice how the positive errors are, in part, balanced

by the negative errors. The correct value of ir to seven decimal places is

3-1415926. There are several shorter ways of evaluating TT. See Encyclopaedia

Britannica, art. "
Squaring the Circle ".

We can obtain the inverse sine series

.

in a similar manner. Now write x = ,
sin - lx = ITT. Substitute these values

in (8). The resulting series was used by Newton for the computation of TT.

4. Exponential theorem. Show that

v 7,2 r<&

1+
I
+

Ii
+

fi
+ ........ <

9>

by Maclaurin's series.

The exponential series expresses the development of ex
,
ax

,
or some other

exponential function in a series of ascending powers of x and coefficients

independent of x.

EXAMPLES. (1) Show that if k = log a

a..i + te +
w

+
w + ...... (io,
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(3) Calculate the numerical value of e correct to four decimal places.

Hint, put x = 1 in (9), etc.

The development by Maclaurin's series cannot be used if the function

or any of its derivatives becomes infinite or discontinuous when x is equated

to zero. For example, the first differential coefficient of f(x) = \f
x, is $/ \'./:,

which is infinite for x = 0, in other words, the series is no longer convergent.

The same thing will be found with the functions log a:, cotx, 1/x, a1 '* and

sec
~ lx. Some of these functions may, however, be developed as a fractional

or some other simple function of x, or we may use Taylor's theorem.

99. Taylor's Theorem.

Taylor's theorem determines tlie law for the expansion of a

function of the sum, or difference of TWO variables * into a series

of ascending powers of one of the variables.

Now let

Ui =/(# + y)>

Assume that

u,
= f(x + y)

= A + By + Gif + Df + . . .
,

. (1)

where A, B, C, D, . . . are constants, independent of y, but

dependent upon x and also upon the constants entering into the

original equation.

Differentiate (1) on the supposition that x is constant and y
variable. Thus,

fg
= B + 2Cy + 9JW + . . . . (2)

Now differentiate (1) on the supposition that y is constant and x

variable,

du, dA dB dC
,

dD
~ = 2 -

First, to show that

du^ du

<l>/ dx
where u^

= f(x + y).

* A function of the sum of two variables is such that if a single variable be

substituted for that sum, the original function reduces to that of a single variable.

For instance,
sin x = u = sin (y + z),

where ./: is the sum of the two variables y and z.

f Note that du^dy and du^dx of (2) and (3) are really partial differential co-

efficients. Strictly, we should write,
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Now let

v = x + y, .\ H!
=

f(v).

Differentiate with respect to x, y constant ; also with respect to

y, x constant.

du^ du^ dv
. du-^ du^ dv

dx dv dx' dy dv dy

(See page 29.) But v = x + y and if y is constant, dv = dx and

dv/dx = 1
; similarly, if x is constant, dv = dy, or dv/dy = 1, there-

fore

du\ _ du^ m du^ _ du^ di^ _ du^
dx dv

'

dy
~

dv ' ' dx
~

dy
'

It, therefore, follows that (2) and (3) are identical.

Since this identity is true whatever be the value of y, the co-

efficients of like powers of y, on each side of the equation, are

equal each to each (footnote, page 172), therefore,

dA dB dC
c--*''H-*J''"s- u>-> ..... ^

But, by hypothesis, (1) is true whatever be the value of y. We
may, therefore, put y = so that the original equation reduces to

a function of x, say,

=/(*)...... (6)

A - u . B -^h. r
1*B' 1 *V n

l d 1 **i-
~dx' ( =2S =

2'Sf' -D =3'S
=
^3-&3-'

Substitute these values of A, B, C, D in the original equation
and we obtain

du y d2u y2 d3u y*
Ul

= f(x + y}
= u +

Tx l
+^ JL_ + _ _!_ + . . . (7)

The series on the right-hand side is known as Taylor's series.

From (6), we may write Taylor's series in the form,

, =f(x + y) =f(x)+f(x)l + f"(x)f-z +/' ry73 + (8)

Or, interchanging the variables,

!
= /(* + y)

- f(y)

EXAMPLE. Prove that

f(x
-

y) = f(x)
-

f'(

Maclaurin's and Taylor's series are slightly different expressions
for the same thing. The one form can be converted into the other
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In substituting f(x + y) for f(x) in Maclaurin's theorem, or by

putting y = in Taylor's. The geometrical signification is that

each function is the equation of a curve with a different origin

on the o>axis and y denotes a constant, not an ordinate, on the

abscissa axis.

EXAMPLES. (1) Expand ?t,
= (x + y)

n
by Taylor's theorem. Put y =

and u = x",
du cPu

dx= 7l*n -'
; ^ = n

<
n - 1 >*

n - 2
' etc -

Substitute the values of these derivatives in (8).

.-. MJ = (x + y)
n = xn + nxn ~ l

y

Verify the following results :

(2) If k = log a,

ttj
= a* + y = ax(l + ky

(3) Ul = (x + y + a)
1 '2 = (x + a)

1 '2 + \y(x + a)
- 1 -

. . . If x = - a,

the development fails.

(4) Wl = sin (x + y)
=

s'mx^l
-

|y
+

-|y
-

. .

.)
+
cosx(y

-
|_ + . .

.^.

For numerical examples, see page 497.

(5) log (x + y) = log x + !
-
|r2 + jj.

-
. . .

(6) loga (l +x) =
to^(*

-
^'

2 +
|i"

-

(7) log (1 + y) = y -
iz/

2 + &f'
-

i?/
4 + . . .

(8) log (1
-

y) =- (y + %y* + \if + iz/
4 + )

If y = 1, the development gives a divergent series and the theorem is then

said to fail. The last four examples are logarithmic series.

(9) Put y = - x in Taylor's series, and show that

x -
:r2

/(*)=/(0)

known as Bernoulli's series (of historical interest, published 1694).

Mathematical textbooks, at this stage, proceed to discuss the conditions

under which the sum of the individual terms of Taylor's series is really equal

to f(x + y). When the given function f(x + y) is finite, the sum of the cor-

responding series must also be finite, and the developed series (Taylor's or

Maclaurin's) must either be finite or convergent. The development is said to

fail when the series is divergent.

It is not here intended to show how mathematicians have succeeded in

placing Taylor's series on a satisfactory basis. That subject belongs to the

realms of pure mathematics.* The reader must exercise " belief based on

suitable evidence outside personal experience," otherwise known as faith.

This will require no great mental effort on the part of the student of the

physical sciences. He has to apply the very highest orders of faith to the

fundamental principles the inscrutables of these sciences, namely, to the

*
If the studeiit is at all curious, Todhunter, or Williamson on "

Lagrange's

Theorem on the Limits of Taylor's Series," is always available.
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theory of atoms, stereochemistry, affinity, the existence and properties of

interstellar ether, the origin of energy, etc., etc. What is more,
" reliance on

the dicta and data of investigators whose very names may be unknown, lies

at the very foundation of physical science, and without this faith in authority
the structure would fall to the ground ;

not the blind faith in authority of

the unreasoning kind that prevailed in the Middle Ages, but a rational belief in

the concurrent testimony of individuals who have recorded the results of their

experiments and observations, and whose statements can be verified . . .".*

The theory of proportional parts or proportional differences is

an application of Taylor's theorem. If a small number be in-

creased by a small fraction of itself, the increase in the value of

the number is nearly proportional to the increase of its logarithm. )

Thus,

Iog10(w + h)
= Iog10w(l

+
-J

= Iog10
w + Iog10

(l
+

For example, let n be not less than 10,000 and h not greater
than unity, h/n is not greater than O'OOOl and the next term is not

greater than i(O'OOOl)
2

,
that is to say, not exceeding 0*000000,0025.

The next term is, of course, much less than this. We may, there-

fore, correctly write, as far as seven decimal places,

log (n + h)
-

log n = 0-4343 x h/n

and log (n + 1)
-

log n = 0-4343 x l/n.

By division, we get the important result,

log (n + h)
-

log n = h

log(n + 1)
- logw 1'

'

provided the differences between two numbers n and h are such

that n is of the order of 10,000 when x is less than unity.

This formula, known as the rule of proportional parts, is

used for finding the exact logarithm of a number containing more

digits than the table of logarithms allows for, or for finding the

number corresponding to a logarithm not exactly coinciding with

those in the tables. The following examples will make this clear :

*
Excerpt from the Presidential Address of Dr. Carrington Bolton to the Washing-

ton Chemical Society, English Mechanic, 5th April, 1901.

f This is commonly stated as an exercise on differentiation. A question like this.

is set :

" How much more rapidly does the number x increase than its logarithm {

"

Here d(log x)/dx = l/x. The number, therefore, increases more rapidly or more slowly

than its logarithm according as x > or < 1. If x = 1, the rates are the same. If

common logarithms are employed, M ( 16) will have to be substituted in place of

unity. E.y., d(\oglox)dx = M/x.
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EXAMPLES. (1) Find the logarithm of 46502-32, having given

log 46501 = 4-6674623

log 46502 = 4-6674716

Difference = 0-0000093

Let x denote the quantity to be added to the smaller of the given logs.

The problem may be stated thus,

log n = log 46501 = 4-6674623 ;

log (n + 1)
= log (46501 + 1)

= 4-6674623 + 0-0000093 ;

log (n + h) = log (46501 + x) = 4-6674623 + jc,

by simple rule of three : if a difference of 1 unit in a number corresponds with

a difference of 0-0000093 in the logarithm, what difference in the logarithm
will arise when the number is augmented by 0*32 ?

.-. 1 : 0-32 = 0-0000093 : x, .-. x = 0-00000298 . . .

The required logarithm is, therefore, 4-6674653.

(2) Find the number whose logarithm is 4-6816223, having given

log 48042 = 4-6816211 ; log 48043 = 4-6816301.

Since a difference of unity in the number causes a difference of 0-0000090

in the logarithm, what will be the difference in the number when the logarithms
differ by 0-0000012 ?

.-. 1 : x = 0-0000090 : 0-0000012,

x = 0-13, or the number is 48042-13.

The rest of this chapter will be mainly concerned with direct

or indirect applications of infinite converging series. 183 on

proportional errors and 158 on the use of Taylor's theorem in

finding the approximate roots of an equation, may also be consulted.

100. The Contact of Curves.

The following is a geometrical illustration of one meaning of the different

terms in Taylor's development.
If four curves Pa, Pb, PC, Pd, . . . (Fig. 101), have a common point P,

any curve, say PC, which passes between two others, Pb, Pd, is said to have a
closer contact with Pb than Pd has.

/Y

FIGS. 101, 102. Orders of Contact of Curves.

Now let two curves P^ and P^ (Fig. 102) referred to the same rect-

angular axes, have equations,

and, y, =/!(*,).
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Let the abscissa of each curve at any given point, be increased by a small

amount 7t, then, by Taylor's theorem,

If the curves have a common point P ,
x = x

l
and y = yl

&t the point of

contact. Substitute the coordinates of this point in equations (1) and (2).

f(x + h) will represent the ordinate PMj and fi(xl + h), the ordinate P^Mr
Similarly, dyjdx, d^y/dx

2
. , . will represent the differential coefficients of the

ordinate of the curve f(x + h) at the point P ; dyjdx^ d^y^dx\ . . .
,
similar

properties for the second curve fi(xl + h).

Since the first differential coefficient represents the angle made by a

tangent with the ic-axis, if, at the point P ,

x = x
l ; y = yl

and dy/dx = dyjdx^
the curves will have a common tangent at P . This is called a contact of the

first order. If, however,

x = x
lt y = yl ; dyjdx = dyljdxl

and cPyjdx* = d?y^\dx\,

the curves are said to have a contact of the second order, and so on for the

higher orders of contact.

If all the terms in the two equations are equal the two curves will be

identical ; the greater the number of equal terms in the two series, the closer

will be the order of contact of the two curves.

101. Extension of Taylor's Theorem.

Taylor's theorem may be extended to include the expansion of

functions of two or more independent variables. Let

u=f(x,y\ . . . (1)

where x and y are independent of each other. Suppose each

variable to change independently so that x becomes x + h and

y becomes y + k.

Let f(x, y) change to f(x + h, y). By Taylor's theorem

If y now becomes y + k, each term of equation (2) will change so

that

~du-, l^
2u k'2

u becomes u + k + i _+...;
ty l)y

2 2!

*bu , Du Wu
7

<)% . Wu Wu
7becomes + -k +...;_ becomes - + - k + . . .

,

by Taylor's theorem. Now substitute these values in (2) and we

obtain,
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^u, d 2w h
+ 5? +

s* ar
+

)

Su=f(x + h, y + k) -f(x,y);

. . . (3)

The final result is exactly the same whether we expand first

with respect to y or in the reverse order.

By equating the coefficients of hk in the identical results ob-

tained by first expanding with regard to h, (2) above, and by first

expanding with regard to k, we get

which was obtained another way in 23.

The investigation may be extended to functions of any number
of variables.

EXAMPLE. Show that

102. The Determination of Maximum and Minimum Values

of a Function by means of Taylor's Series.

I. Functions of one variable. Taylor's theorem is sometimes

useful in seeking the maximum and the minimum values of a

function, say, y =
f(x). It is required to find particular values of

x in order that y may be a maximum or a minimum.

Let x change by a small amount h so that by Taylor's

development,

First, it must be proved that h can be made so small that
C

-^h will be

greater than the sum of all succeeding terms of Taylor's series. Assume
that Taylor's series may be written,

f(x + h} = y + Ah+ Bh? + CW + . . .
,

where A, B, C, . . . are coefficients independent of h but dependent upon x,

then, if Rh = Bh + CW + ... we have,

f(x + h) =y + h(A + Eh)..... (2)

For sufficiently small values of h, Rh must be less than J, because, by

hypothesis, .4 is independent of h.
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Second, when x changes by a small amount h, it follows, ex-

amples 57, that for a maximum, f(x) >f(x + h), and/(#) >f(x -
h) ;

for a minimum, f(x) < f(x + h), and f(x) < f(x
-

h). It is, therefore,

easy to see that if

fis negative, f(x) will be a maximum
;

f(x h)
- /(#h is positive, f(x) will be a minimum

;

Ichanges sign, /(a?) will be neither.

whatever the sign of ft.*

If dyldx has a finite value, h may be imagined so small that

the sign of A + Eh of (2) does not change when that of ft changes.

Therefore, the sign of f(x + ft)
-

f(x) will depend on that of ft,

and consequently f(x) cannot be either a maximum or a minimum.

Only when ft and A + Eh change sign simultaneously (as ft passes

through zero) can x be either a maximum or a minimum. Under
these circumstances, dyldx becomes zero for maximum or minimum
values of y.

If dx/dy vanishes,

As before, it can be shown that
-JjJ

is greater than all suc-

ceeding terms of the series. But ft is of necessity positive, the

sign of the second differential coefficient will, therefore, be the

same as that of f(x + ft)
-

f(x). In other words, y will be a

maximum when dyldx = and d^yldx^ is negative, and a minimum,

if d^yldx^ is positive.

If, however, the second differential coefficient vanishes, the

reasoning used in connection with the first differential must be

applied to the third differential coefficient. If the third derivative

vanishes, a similar relation holds between the second and fourth

differential coefficients.

To generalise, if the order of the first differential coefficient that

does not vanish is odd, f(x) will be neither a maximum nor a

minimum unless dn
y/dx

n
passes through infinity (where n is the

order of the differential that does not vanish). If n is even, we
shall have a maximum or a minimum according as d n

yldx" is

negative or positive.

* When reference is made to a magnitude without reference to its positive or

negative values it is frequently written \h\, \a\, |sina;|, and called the absolute rvalue

of h, a, or sin a;, as the case might be. In this work h is written for \h\, + sinx

for I sin x
j,

etc.
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Hence the rules :

1. y is either a maximum or a minimum for a given value of x

only when the first non-vanishing derivative, for this value of x
t
is

000ft,

2. y is a maximum or a minimum according as the sign of the

non-vanishing derivative of an even order, is negative or positive.

In practice, if the first derivative vanishes, it is often con-

venient to test by substitution whether y changes from a positive

to a negative value. If there is no change of sign, there is neither

a maximum nor a minimum.

EXAMPLES. (1) Test y = x?- 12a;2 -60.r for maximum or minimum values.

dyldx = 3x2 - 24x - GO ;
.-. x* - Sx - 20 = 0, or x = -

2, or + 10.

<Pyjdx
z = 6x - 24

; or, x = + 4.

Since d2
y/dx

2 is positive when x = 10 is substituted, x = 10 will make y a

minimum. When - 2 is substituted, d2
y/dx

2 becomes negative, hence x = - 2

will make y a maximum. This can easily be verified :

If x = -
3,

-
2,

-
1, . . . + 9, +10, + 11, ...

y = + 45, +64, +48, ... - 783, - 800, - 781 ...

(max.) (min.)

(2) What value of x will make y a maximum or a minimum in the ex-

pression, y = x'
3 - 6x2 + llx - 6 ?

dyldx = 3z2 - I2x + 11 = ; .-. x = 2 I/ s/3 ;

(Py/dx* = 6* - 12.

If x = 2 + I/ Vs", d*yldx
2 = 2 \/3. . (max.) ;

x = 2 -
I/ \/3, dPy/dx* = - 2 ^3. . (min.).

II. Functions of tioo variables. To find particular values of

x and y which will make the function,

u =
f(x, y),

a maximum or a minimum. As before, when x changes by a small

amount h, and y by a small amount k, if

/is negative, f(x, y) will be a maximum ;

f(x h, y k)
-

f(x, y)) is positive, f(x, y) will be a minimum ;

[changes sign, f(x, y) will be neither,

whatever be the signs of h and k. Also, let

u = f(x + h,y + k)
-

f(x, y).

Expand this function as in the preceding section (3). By making
the values of h and k small enough, the higher orders of differ-

entials become vanishingly small. But as long as ~bu/?)x and

remain finite, the algebraic sign of &u will be that of
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At a maximum or a minimum point, we must have

and, since h and k are independent of each other, u can have a

maximum or a minimum value only when

l)u ~du

5
_ = and

3
-=0..... (5)

because the sign of Su, in (4), depends upon the signs of h and k.

Thus Su will be positive for some values of Duftx, negative for

others. The same thing holds for 'bufty. Substituting ^uj^x = 0,

= in (3), 101, we get

If h and k be taken sufficiently small, 8u will always have the

same sign. (Why?) For the sake of brevity, write the homo-

geneous quadratic (6) in the form

ah2 + bhk + cfc
2

.

On page 388, it is shown that the sign of this quadratic remains

invariable, provided ac is greater than 62 and the signs of a and

c are the same. This means that if condition (5) holds, &u will

have the same sign for all values of h and k within certain limits,

provided ^ufox2 and Wufby'
2 have the same sign and

Wu Vu .

-

^T, ^7 is greater than
2 2

This is Lagrange's criterion for the maximum and minimum
values of a function of two variables. When this criterion is

satisfied, f(x, y) will be a maximum or a minimum according as the

sign of ^'2ul^x2
(or ^ 2

u/^y'
2
)
is negative or positive.

d% Wu .

If

or WulDx2 and Wufty'
2 have different signs, the function is neither a

maximum nor a minimum. There is a point of inflection.

**u >% Vu_
2 * '

in order that a maximum or a minimum may occur, it is neces-

sary that the first set of differential coefficients which do not

vanish, shall be of an even order.
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EXAMPLES. (1) Test the function u = r1 + y
3 - Baxy for maxima or

minima,

'duj'dx = 8z2 - Say = 0, .-. y = x2
/a ;

'du/'dy = By
2 - Bax = 0, .-. y

2 - ax=ar/a
2 - ax = 0.

.. x = 0, x3 - ft
3 = 0, or x = a.

The other roots, being imaginary, are neglected.

.. y = 2
/ft
=

ft, or T/
= 0.

3% 3% B2u

Call these derivatives (ft), (6), and (c) respectively, then

If x = 0, (ft)
= 0, (6)

= -
3ft, (c)

= 0.

If x = ft, (ft)
= 6ft, (b)

= -
3ft, (c)

= 6ft.

^-^:. = - 3ft.

which means that x = a will make the function a minimum because

is positive ; x = will give neither a maximum nor a minimum.

(2) Find the condition that the rectangular parallelepiped whose edges

are x, y and z shall have a minimum surface when its volume is v3 .

Since v3 = xyz, u = xy + yz + zx = xy + v3
/x + v3

/y. When 9w/3x = Or

x'*y
= v3

; when 'du/'dy 0, xy
2 = v3 . The only real roots of these equations-

are x = y = v, therefore, z = v. The sides of the box are, therefore, equal to

each other.

(3) Show that u = a*y*(l
- x -

y) is a maximum when x = \, y = \.

(4) Find the maximum value of u in u= x5 - Soar2 - 4ft?/
2

. 'du/'dx= Bx(x - 2a) ;

= - 8ft. Condition (5)=-8ay; 'Puffx*= 6(x
-

a) ; o2
u/'dx'dy= ;

is satisfied by x = 0, y = and by x = ft, y = 0.

The former alone satisfies Lagrange's condition

(7), the latter comes under (8).

(5) In Fig. 103, let P
l
be a luminous point ;

OM
it OM<i are mirrors at right angles to each

other. The image of P
1

is reflected at jVj and

JV.J in such a way that
(i.) the angles of inci-

dence and reflection are equal, (ii.)
the length

of the path P^N^ is the shortest possible.

(Fermat's principle,
" a ray of light passes from

one point to another by the path which makes
the time of transit a minimum ".) Let ^ = r

lt

i2
= r

2 be the angles of incidence and reflection

as shown in the figure. To find the position of

Let CW = x; ONl
= y, OM2

= c^ ;
M

and Nz.

= 62 ; OMl
Let

.'. S =
Find 9s/dz and dscty. Equate to zero, etc. Ansr.

x = (a^ - ft162)/(61 + 62) ; y = (^ -
162)/(ft1 + 0,2).

Note that x/y = (ftj + fta)/(6i + &2). Work out the same problem when the

angle M^OM^ = a.

(6) Required the volume of the greatest rectangular box that can be sent

Q
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by
" Parcels Post " in accord with the regulation :

"
length plus girth must

not exceed six feet". Ansr. 1ft. x 1 ft. x 2ft. = 2c.ft. Hint. V = xyz is to

be a maximum when V = x + 2(y + z)
= 6. But obviously y = z, .-. V = xy

z

is to be a maximum, etc.

(7) Required the greatest cylindrical case that can be sent under the same

regulation. Ansr. Length 2ft., diameter 4/ft., capacity 2*55 c.ft. Hint.

Volume of cylinder = area of base x height, or, ^irW
2 is to be a maximum

when the length + the perimeter of the cylinder = 6, i.e., I + irD = 6. Ob-

viously I and D denote the respective length and diameter of the cylinder.

See also S 106.

103. Indeterminate Functions.*

In discussing the velocity of reactions of the second order, we
found that if the concentration of the two species of reacting

molecules is the same, the expression

ftt = ^_log?JL.(
a - b b - x b'

assumes the indeterminate form

kt = CD x 0,

by substituting a = b. WT

e are constantly meeting with the same

sort of thing when dealing with other functions, which may reduce

to one or other of the forms : 0/0, GO/ oo, oo -
GO, I

00

, 00, ...
We can say nothing at all about the value of any one of these

expressions, and, consequently, we must be prepared to deal with

them another way so that they may represent something instead

of nothing. They have been termed illusory, indeterminate and

singular forms.

Fractions which assume the form J are called vanishing

fractions, thus, (ax"
- %a2x + as

)/(bx'
2 - 2abx + bd2

)
reduces to g,

when x = a. The trouble is due to the fact that the numerator

and denominator contain the common factor (x
-

a)
2

. If this is

eliminated before the substitution, the true value of the fraction

for x = a can be obtained, viz., a/b.

These indeterminate functions may often be evaluated by alge-

braic or trignometrical methods, but not always. Taylor's theorem

furnishes a convenient means of dealing with many of these func-

tions. The most important case for discussion is "," since this

* In one sense, the word "indeterminate
"

is a misnomer, because it is the object

of this section to show how values of such functions may be determined.
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form most frequently occurs and most of the other forms can be

referred to it by some special artifice.

Case i. The function assumes the form g. As already pointed

out, the numerator and denominator here contain some common
factor which vanishes for some particular value of x, say. These

factors must be got rid of. One of the best ways of doing this,

short of factorising at sight, is to substitute a + h for x in the

numerator and denominator of the fraction and then reduce the

fraction to its simplest form. In this way, some power of h will

appear as a common factor of each. After reducing the fraction

to its simplest form, put h =
0, so that a = x. The true value of

the fraction for this particular value of the variable x will then

be apparent.

For cases in which x is to be made equal to zero, the numerator

and denominator may be expanded at once by Maclaurin's theorem

without any preliminary substitution for x. For instance, the trig-

nometrical function (sin x)/x approaches unity when x converges
towards zero. This is seen directly. Develop sin a? in ascending

powers of x as indicated on page 228. We thus obtain

(/>

o*3 /y5 /y7 \
? _ _ + _ + \
1 3! 5! 7!

' '

') = -, _ x*_ x_ _ x*

x x 3l
+

5l
~

7l

The terms to the right of unity all vanish when x = 0, therefore,

X

EXAMPLES. (1) Show Ltx = (a
x -

6*)/;r
= log a/6, page 37.

(2) Show Mr = (l
~

cosz)/z
2 = .

(3) The fraction (x"
- an)/(x -

a) becomes 0/0 when x = a. Put x = a + h

and expand by Taylor's theorem in the usual way. Thus,

T . xn ci
n T . (a + h)

n an
Ltx = a = fo = a -

{
= na"- 1

,
etc.

x - a h

It is rarely necessary to expand more than two or three of the lowest powers
oih.

(4) Show Ltx = !*-^-^ = -. Put x = 1 + h and expand.
J. X It

* The symbol
" x = "

is sometimes used for the phrase
"
as x approaches zero ".

_ Q
or

._ Q
are also used instead of our "Zr = "

meaning "the limit of

... as x^approaches zero ".
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The following method will be found very convenient for dealing
with indeterminate functions of this nature.

Let ^y^y - be a fraction in which /(a?), f^x) are the parts
fi(x) (

x ~ a
)

not containing vanishing factors, n and m are positive integers.

First let m = n. By differentiation of the numerator and deno-

minator m times and then substituting a for x we get /(xj/'f^x).

For instance, the value of the expression,

Lt
X'~ 1

* =1

is obtained by differentiating once so that

Lt
x = *

= 1Qx2 + x - 2
~

5*

If n > m, the numerator will vanish after m differentiations

and the fraction will be equal to zero. If n < m, the denominator

will vanish after n differentiations and the fraction will become

infinitely great. Under these circumstances we proceed by the

following rule : To find the value of an algebraic fraction, sub-

stitute the successive differential coefficients of the numerator and

denominator until a numerator and denominator are obtained

which do not vanish for the value of x under consideration. If

the numerator vanishes when the denominator is finite, the

limiting value is zero. Some transcendental functions may be

treated in this way.

EXAMPLES. (1) Prove that / = logic, by means of the general formula

\x
ndx = flLLi. Hint. Show that

n + l
/y.W + 1

Ltn^-i-- = log or.

n + 1

Differentiate the numerator and denominator separately with regard to n and

substitute n = - 1 in the result. See 71.

(2) Show Lty= 1 (* - 1

)
= c log

l\ See (4), 91, (8), 92.

7 -
J-V^7 vr I v

i

Case ii. The function assumes the form oo/ oo. These can be

converted into the preceding "J" case by interchanging the

numerator and denominator, or else proceed as for
g. by the

method of successive differentiation.

EXAMPLES. (1) Show that

log sin x
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Simple substitution furnishes -
oo/- oo. Differentiate once and

cos a- sin2x _ 1

2 cos 2x s'mx
~

2
*

0'

Differentiate the second factor once more and we get

2 cos 2a-/cos x = 2, etc.

(2) Ltx-ex
lx^ = 00/00, when n is positive. Differentiate n times and

1.2 ... n "-*

Case iii. T/ie function assumes the form oo x 0. Obviously,

such a fraction can be converted into the "0/0" form by putting

the infinite expression as the denominator of a fraction.

EXAMPLES. (1) x log x becomes x -
oo, when x = 0. Transpose the

infinite term to the denominator and differentiate.

or/logo: becomes on differentiation z2
;

.'. Ltx = x\ogx = 0.

(2) Show Lta = b_L_ log j*

-
*f = _^_

a - b (b
-

x)a a(a
-

x)

(3) Show Ltx = e~ x
\og x = x oo = 0.

Case iv. The function assumes the form GO oo. First reduce

the expression to a single fraction and treat as above.

EXAMPLES.-(I) Lt.^r _ J_ = slogs-s-1.l
x - 1 log x (x

-
1) log x

Differentiate twice and

T , x 1
Lt'

='*T3 -5-
etc '

Case v. T/ie function assumes one of the forms 1, 00, 0.

Take logarithms and proceed as above.

EXAMPLES. (1) Ltx = xx = 0. Take logs and the expression becomes

-
oo/ oo ;

differentiate and Ltx = xx = 1.

(2) Show Ltx = Q(l + mx}
llx = I

00 = cm .

Sometimes a simple substitution will make the value apparent

at a glance. For instance, substitute x = \ly and show that

T . x + a T . I + ay
-,

Jjt.-a,-j-
= L/tu - n

---* = I-

-~x + b -1 + by

Another illustration has been studied in 16, namely,
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103. " The Calculus of Finite Differences."

In the series,

I 3
, 23, 33

,
43

,
53

,
. . . ,

subtract the first term from the second, the second from the third,

the third from the fourth, and so on. The result is a new series,

7, 19, 37, 61, 91, . . .
,

called the first order of differences. By treating this new series

in a similar way, we get a third series,

12, 18, 24, 30, . . .
,

called the second order of differences. This may be repeated as

long as we please, unless the series terminates or the differences

become very-irregular.

The different orders of differences are usually arranged in the

form of a " table of differences ". To construct such a table, it is

usual to begin at some convenient place towards the middle of a

series of corresponding values of the two variables, to denote the

different values of one variable by, say,

and corresponding values of the other by, say,
ni ni ni nt ni

The differences between the independent variables are denoted by
the symbol "A," with a superscript to denote the order of differ-

ence and a subscript to show the relation between it and the

independent variable. Thus,

Argument. Function. Orders of Differences.

x -fr 2/-2> Al
r <n

~ 2 '

A**-li i/-l> Al T -2' A3

*o 2/o
A2-i> A4-2>

T
'

7/'
A

'

A*
A ~ P

xl yl
' AV

where

' A2 =
2/2

~ %i + 2/0'
e^c>

Such a table will often furnish a good idea of any sudden change
in the relative values of the variables with a view to expressing the

experimental results in terms of an empirical or interpolation for-

mula. It is not uncommon to find faulty measurements, and other

mistakes in observation or calculation, shown up in an unmistakable

manner by the appearance of a marked irregularity in a member
of one of the difference columns. It is, of course, quite possible
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that these irregularities are due to something of the nature of a

discontinuity in the phenomenon under consideration.

To find the differential coefficients of one variable with respect

to another from a table of differences. If corresponding values of

two variables can be represented in the form of a mathematical

equation, the differential coefficient of the one variable with respect

to the other can be easily obtained. If an empirical formula is

not available, the tangent to the "smoothed" curve, obtained by

plotting the corresponding values of x and y on coordinate or

squared paper, will sometimes allow the differential coefficient to

be deduced but not always.

According to Stirling's interpolation formula,

X
'

y-y + -
,

' y '
~~~

I' ~2~~ 2!
* ~3!

~

2

(J. Stirling's Methodus Differentialis, London, 1730), when we

are given a set of corresponding values of x and y, say #
, yQ ;

xv yv . . .
,
we can calculate the value y corresponding to any

assigned value x, lying between # and xr (This kind of opera-

tion is discussed in the next section.) Stirling's interpolation

formula supposes that the intervals x
l

#
,
# - aj_ lf

. . . are

unity. If, however, h denotes the equal increments in the values

x
l
- X

Q ,
X
Q
- x_ l

. . ., Stirling's formula is written

x A> + Ai a* (x + h)x(x-h)~

+snp4 -i+ si

h)x*(x-h)A - (1)

(x + 2fe) (x + h)x(x
-

h) (x
-

2/t) A5_ 2 + A 5_ 3

5! k* 2,

Differentiate (1) with respect to x. Put x = in the result

<fy_VAlo + Al-i 1 A3. 1 + A3_ 2
1 A^_ 2 + A^ 3 _ \

dx~h\ 2 6" 2
+

30' 2

This series may be written in the form,

^//_1/A
1 + A 1 _

1
P A^_

1
+ A3_ 2

1^.2' A5

dx~h\ 2~ 3!" 2 5!
'

The following method of deducing (2) is instructive. Assume the expansion

y = A + Bx + Cxz + Dy? + Ex4 + . . . = say, T/O .

Differentiate with respect to x,

.-. dyjdx = B + 2Cx + 3Dx* + lEx* + ..... (4)
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Let x receive a small increment + h and also a small increment -
h, then,

from|the original equation,

y = A + B(x + h) + C(x + li)
z + D(x + h)

3 + . . . = say, yl ;

y = A + B(x- h) + C(x -
7i)

2 + D(x -
h)* + . . . = say, y_ t

.

But 2/i
-

2/o
= Alo; 2/o

~
2/-i = A1

-!, . . .

Therefore, making the obvious subtractions,

A 1

,,

= Bh + C(2xh + 7i
2
) + D^xVi + 3z/i2 + h3

) + . . .

A1_
1
= Bh + C(2xh - 7z

2
) + D(9aflh

- 3xW + h3
) + . . .

Add these equations and divide by 27z,

^

h 2

When h is made very small, the terms containing h may be neglected. The

resulting'series,

Lt
inCr ' y = Al + Al~ 1 - = Ltk = {
incr. x 2 h

= B + 2C
is identical with that just developed for dyjdx in equation (4). As a first

approximation, therefore, we can write

dy_l AJp + A1
-!

(5)
dx

~
h

'

2

If a greater accuracy than this is desired, substitute x + 2h and x - 2h for

x in the original equation. In this way we can build up (2).

To illustrate the use of formula (2), let the first two columns

of the following table represent a set of measurements obtained

in the laboratory. It is required to find the value of dy/dx

corresponding to x = 5' 2.

X y A1 A2 A3 A4

4-7 109-947 n 563
4-8 121-510

. 1-217 .126
4-9 134-290

14 .123
1-343

.U3 0-017

5-0 148-413 1-486 0-012

5-1 164-022 1-641 0-019

5-2 181-272
. 1-815 .

0-015

5-3 200-337
23 .Q69

2-004 0-024

5-4 221-406 2-217
Q .231

0-018

244 '692
25-734

2 '448
0-259

'028

5-6 270-426
28>441

2-707

5-7 298-867

Make the proper substitutions in (2). In the case of 5*2 only the

block figures in the above table are required. Thus,

dy = 1 /17-250 + 19-Q65 1 0-174 + 0-189
1_

Q-QQ9 - Q-Q04\

dx 0-1V 2 6" 2
+ 30" 2

= 181-273.

The second and third terms are not often used. They have the

nature of correction terms.
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In the same way it can be shown by differentiating (1) twice,

and putting x = 0,

l A4 ,
* A \ (* }-1 ir- + r 7

1/2. 2
2. 2.2-., 2. 2'. 3*- - '- "-

EXAMPLES. (1) From Horstmann's observations on the dissociation pres-

sure (/>) of the amuionio-chlorides of silver at different temperatures (0) :

= 8, 12, 16, ... C.

p = 43-2, 52-0, 65-3, . . . cm. Hg.,

show that at 12, dpjde = 2-76.

(2) Find ds/de at C. from the following data :

0=1, 0-5, 0, -0-5, -1-0, . . . ;

106 x s = 1288-3, 1290-7, 1293-1, 1295-4, 1297-8, . . .

Ansr. ds/de = 5-7 x 106 .

(3) Find the value of cPyldx* for y= 5-2 from the above table. Ansr. 181-37.

Also plot the dyjdx, 7/-curve from the data given.

The difference columns should not be carried further than is consistent

with the accuracy of the data, otherwise the higher approximations will be

less accurate than the first. Do not carry the differences further than the

point at which they begin to exhibit marked irregularities.

(4) The variation in the pressure of saturated steam (p) with temperature

(tf)
has been found to be as follows :

e = 90, 95, 100, 105, 110, 115, 120, . . . ;

p = 1463, 1765, 2116, 2526, 2994, 3534, 4152, . . .

Hence show that at 105 dpjde = 87-6, cPpldP = 2-48.

Everett's papers in the Quarterly Journal of Pure and Applied Mathe-

matics, 30, 357, 1900 ; 31, 304, 1901, may be consulted for some recent work

on this subject. See also Nature, 60, 271, 365, 390, 1899.

105. Interpolation and Empirical Formulae.

After a set of measurements of two interdependent variables

has been made in the laboratory, it is necessary to find if there is

any simple relation between them, that is, to find if a general ex-

pression of the one variable can be obtained in terms of the other

so that intermediate values can be calculated. The process of

computation of the numerical values of two variables intermediate

between those actually determined by observation and measure-

ment, is called interpolation. When we attempt to obtain values

lying beyond the limits of those actually measured, the process is

called extrapolation.
It is apparent that the correct formula connecting the two vari-
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ables must be known before exact interpolation can be performed,
so much so that the method of testing a supposed formula is to

compare the experimental values with those furnished by interpo-

lation as exemplified in 18, 88, 96 and elsewhere.

Interpolation is based on the fact that when a law is known
with fair exactness, we can, by the principle of continuity, antici-

pate the results of any future experiments.
If only two experimental results are known, we must assume

that the two quantities vary in a proportional manner. The

geometrical meaning of this is that if the positions of two points

are known, we must assume that the curve passing through these

points is a straight line, because an infinite number of curved

lines could be drawn through these two points.

If the differences bet\veen the succeeding pairs of values are

small and regular, any intermediate value can be calculated by

simple proportion on the assumption that the change in the value

of the function is proportional to that of the variable. Interpola-

tion is employed in the graduation of a thermometer between

and 100, extrapolation beyond these points. In Gauss' method of

double weighing, the mean weight of the substance weighed in each

pan is regarded as the true weight.

The position of rest of a balance is deduced from the amplitude
of the oscillations on each side. Three, five, or some odd number

of observations are made, the arithmetical mean of the observations

on each side are added together, the mean of this sum is the null

point, or position of rest of the balance.

Weighing by the method of vibrations is another example of

interpolation. Let x denote the zero point of the balance, let w^
be the true weight of the body in question. This is measured by
the weight required to bring the index of the balance to zero point.

Let #! be the position of rest when a weight w
l

is added and x2
the position of rest when a weight w.

2
is added. Assuming that

for small deflections of the beam the difference in the two positions

of rest will be proportional to the difference of the weights, the

weight (WQ) necessary to bring the pointer to zero will be given by
the simple proportion :

K - w
i) (

x
o
~ xi)

=
(
w

-2

~ w
i)

'

(
x

-2

~ x
i)>

or, w = w
l + (x

- xj (w2
- w

l)/(x2
-
xj.

When the intervals between the two terms are large, or the
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differences between the various members of the series decrease

rapidly, this simple proportion cannot be used with confidence.

To take away any arbitrary choice in the determination of the

intermediate values, it is commonly assumed that the function can

be expressed by a limited series of powers of one of the variables.

Thus we have the interpolation formulae of Newton, Bessel, Stirling,

Lagrange, and Gauss.

Let x_.2 , y_., ; x_
l} y_ l ;

x
, t/ ;

x
lt y 1 ;

x
2 , y.2 be corresponding

values of the two variables x and y. It is required to calculate the

value y corresponding to some value x lying between rr and xr
Newton's interpolation formula is

2/0

continued until the differences become negligibly small or irregular.

EXAMPLE. The use of Newton's formula may be illustrated by the follow-

ing problem: What is the cube root of 60 '25, given the first two columns in

the subjoined table ? The cube root of

60 = 3-914868 ,

= .021629
61 . 3-936497 ^ I .021394

A - - 0-000235.

62 = 3-957891
>
" J ^ = - 0-000228.

63 = 3-979057 = .020943
A'^2

= - 0-000223.

64 = 4-000000

If an increase downwards is reckoned positive, a decrease downwards is to be

reckoned negative. The first orders of differences are, therefore, positive ;

the second, negative ;
and the third, positive. Substitute a- = in (1)

= 3-914868 + 0-005407 + 0'000022 + O'OOOOOO.

= 3-920297.

The number obtained by simple proportion is 3-920295. The correct number
is a little greater than 3-920297.

Lagrange's interpolation formula is more general than the

above. " Given n consecutive values of a function, to find any
other intermediate value."

Let y become t/ , y lt y.2 , ?/3,
. . .

, y,,
when x becomes a, b, c,

d, . . . n. The value of y corresponding to any given value of x,

can be determined from the formula

y ^(x-b)(x-c). . .(x-n) (x-a)(x-c) . . .(x-n)

(a-b)(a-c)...(a-n)
J
^(b-d)(b-c) . ..(b-nf

1 ^
|(9

+ (x-a)(x-c) . . . (a-4
(n-a)(n-b). . . (n-m)

'"
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If the function is periodic, Gauss' interpolation formula may
be used. This has a close formal analogy with Lagrange's.*

= sin|(a
- b).sin(x -

c) . . . sin^a -
n) ,.

sin^(a
- 6).sin(a -

c) . . . sm%(a - nf
9

Lagrange's formula may be employed for the conversion of

the scale readings of the spectroscope into wave-lengths. Assum-

ing that the indices of refraction (y , yv y2 ,
. .

.)
are inversely as

the squares of the wave-lengths (?& ,
nv n

2 ,
. .

.)
if the scale readings

of, say, three lines near together are given and the wave-lengths of

two of the lines, the wave-length of the third can be found by

simple substitution in Lagrange's formula (2), which now assumes

the form,

'

~

EXAMPLES. (1) For the three bright magnesium lines, 7 = 5183, 72=5167,
n = 74'5, n-i

= 74-8, n.2 75 (Lupton). Required the wave-length y^ of the

third Mg line.

1 * Oj2
.

1 03
. = 5173

y\
~

(5183)
2

'

0-5
+

(5167)
2

'

0-5
'

Actual measurement gives 5172.

(2) The scale readings of the Li, Tl and Na lines were found to be re-

spectively 6-15, 10-55, and 8-0. Required the wave-length of the Na line

given Li = 6708, Tl = 5351 (Schuster and Lees). Ansr. 5932.

The most satisfactory method of finding a formula to express
the relation between the two variables in any set of measurements,
is to deduce a mathematical expression from known principles or

laws, and then determine the value of the constants from the ex-

perimental results themselves. Such expressions are said to be

theoretical formulae as distinct from empirical formulae, which

have no well-defined relation with known principles or laws.f
It is, of course, impossible to determine the correct form of a

function from the experimental data alone. An infinite number

of formulae might satisfy the numerical data, in the same sense

* For the theoretical bases of these reference interpolation formulae the reader

must consult Boole's work, A T/eatise on the Calculus of Finite Differences, p. 38, 1880.

f The terms "formula" and "function" are by no means synonymous. The

formula is not the function, it is only its dress. The fit may or may not be a good
one. In other words, the function is the relation or law involved in the process. The

relation may be represented in a formula by symbols which stand for numbers. This

must be borne in mind when the formal relations of the symbols are made to represent

some physical process or concrete thing. See the remarks on page 394 with reference

to the rejection of certain roots of numerical equations.
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that an infinite number of curves might be drawn through a series

of points. (See "Contact of Curves," "Multiple Points," etc.)

For instance, over thirty empirical formulae have been proposed
to express the unknown relation between the pressure and tem-

perature of saturated steam.

As a matter of fact, empirical formulae frequently originate

from a lucky guess. Good guessing, here as elsewhere, is a fine

art. A hint as to the most plausible form of the function is some-

times obtained by plotting the experimental results. It is useful

to remember that if the curve increases or decreases regularly, the

equation is probably algebraic ;
if it alternately increases and de-

creases, the curve is probably expressed by some trignometrical

function.

If the curve is a straight line, the equation will be of the form,

y = mx + b. If not, try y = axn
,
or y = ax/(l + bx). If the rate

of increase (or decrease) of the function is proportional to itself we
have the compound interest law. In other words, if dy/dx varies

proportionally with y, y = be~ a* or beax . If dy/dx varies pro-

portionally with x/y, try y = bxa
. If dy/dx varies as x, try

y = a + bx2
. Other general formulae may be tried when the

above prove unsatisfactory, thus,

fl \ '7*

y = T ; y = 10" + bx
; y = a + b log x ; y = a -f be*, etc.

OC

Otherwise we may fall back upon Maclaurin's expansion in ascend-

ing powers of x, the constants being positive, negative or zero.

This series is particularly useful when the terms converge rapidly,

96, 2.

When the results exhibit a periodicity, the general formula to

be tried, is

y = a -|- ax
sin x + b

l
cos x + a.2 sin 2x + b

2
cos 2x + . . .

If the cycles are regular, only the first three terms on the right

need be used. Such phenomena are the ebb and flow of tides,

annual variations of temperature and pressure of the atmosphere,

cyclic variations in magnetic decimation, etc. See also
" Fourier 's.

Series ".

Empirical formulae, however closely they agree with facts, do

not pretend to represent the true relation between the variables

under consideration. They do little more than follow, more or

less closely, the course of the graphic curve representing the re-

lation between the variables within a more or less restricted range.
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Thus, Eegnault employed three interpolation formulae for the vapour

pressure of water between - 32 F. and 230 F.* For example,

from - 32 F. to 0F., he used p = a + bae
;
from to 100 F.,

logp = a + bae + eft*; from 100 to 230 F., logp = a + bo.* -
c(3 .

Kopp required four formulae to represent his measurements of the

thermal expansion of water between and 100 C. Each of Kopp's
formulae was only applicable within the limited range of 25 C.

Dulong and Petit's memoir, referred to on page 43, is well worth reading
for some instructive artifices useful in deducing empirical formulae.

Graphic interpolation. If all attempts to deduce or guess a

satisfactory formula are unsuccessful, the results are simply tabu-

lated, or preferably plotted on squared paper, because then "it is

the thing itself that is before the mind instead of a numerical

symbol of the thing ".

Intermediate values may be obtained from the graphic curve

by measuring the ordinate cor-

responding to a given abscissa

IfOO"
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the curve corresponding to any scale reading, gives the desired

temperature.

EXAMPLES. (1) What temperature corresponds to a scale reading of 160

scale divisions in the above diagram ? Ansr. 1300.

(2) Construct a series of curves from the exposure formula of a thermo-

meter, 43, (12), between 6 = 0-1 C. and 3-0; x = to x = 300, y = to

y = 200. What use is the resulting diagram ?

(3) By plotting on squared paper corresponding values of centimetres

and inches, litres and pints, grams and ounces, Fahrenheit and Centigrade

degrees, etc., etc., the mutual conversion of the one into the other can be

conveniently effected by inspection (i.e., without calculation). Try this :

given 1 oz. = 28-34 grms., 2 oz. = 56-69 grms., 8 oz. = 226-75 grms.,
1 Ib. = 453-60 grms.

106. To Evaluate the Constants in Empirical or

Theoretical Formulae.

Before a formula containing constants can be adapted to any

particular process, the numerical values of the constants must be

accurately known. For instance, the relation

V = 1 + a.0,

represents the volume (v) to which unit volume of any gas expands
when heated to 0. a is a constant. The law embodied in this

equation can only be applied to a particular gas when a assumes

the numerical value characteristic of that gas. If we are dealing

with hydrogen, a - 0-00366 ;
if carbon dioxide, a == 0'00371 ;

if

sulphur dioxide, a = 0-00385.

Again, if we want to apply the law of definite proportions, we

must know exactly what the definite proportions are before it can

be decided whether any particular combination is comprised under

the law. In other words, we must not only know the general law,

but also particular numbers appropriate to particular elements.

In mathematical language this means that before a function can

be used practically, we must know :

1. The form of the function (i.e.,
the general formula).

2. The numerical values of the constants.

The determination of the form of the function has been discussed

in the preceding section, the evaluation of the constants remains

to be considered.

Is it legitimate to deduce the numerical values of the constants

from the experiments themselves ? The answer is that the numerical
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data are determined from experiments purposely made by different

methods under different conditions. When all independently
furnish the same result it is fair to assume that the experimental
numbers include the values of the constants under discussion.

J. F. W. Herschel's A Preliminary Discourse on the Study of
Natural Philosophy, 221 et seq., is worth reading in this con-

nection.

In some determinations of the volume (v) of carbon dioxide

dissolved in one volume of water at different temperatures (0), the

following pairs of values were obtained :

6= 0, 5, 10, 15;

v = 1-80, 1-45, 1-18, I'OO.

As Herschel has remarked, in all cases of "direct unimpeded
action," we may expect the two quantities to vary in a simple

proportion, so as to obey the linear equation,

y = a + bx
; we have, v = a + bO, . . (1)

which, be it observed, is obtained from Maclaurin's series by the

rejection of all but the first two terms.

It is required to find from these observations the values of the

constants, a and b, which will represent the experimental data in

the best possible manner.

The above results can be written,

1. 1-80 = a, \

2. 1-45 = a + 56, I

3. M8-a+ Wb,
I

4. 1-00 = a + 15&J
which is called a set of observation equations.

From
1 and 2, a = 1-80, b = - 0-07,

2 and 3, a = O64, b = - 0'054,

3 and 4, a = 0-82, b = - 0-036, etc.

This want of agreement between the values of the constants

obtained from different sets of equations is due to errors of

observation. It nearly always occurs when the attempt is made

to calculate the constants in this manner.

The numerical values of the constants deduced from any

arbitrary set of observation equations can only be absolutely

correct when the measurements are perfectly accurate. The

problem here presented is to pick the best representative values

of the constants from the experimental numbers. If all the
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measurements were equally trustworthy, the correct method

\\ould be to find the arithmetical mean of all the values of the

constants so determined.

The constants must satisfy the following criterion : The differ-

ences between the observed and the calculated results must be the

smallest possible with small positive and negative differences.

One of the best ways of fixing the numerical values of the

constants in any formula is to use what is known as the method

of least squares. This rule proceeds from the assumption that

the most probable values of the constants are those for which the

sum of the squares of the differences between the observed and the

calculated results are the smallest possible (see page 433).

To take the general case first, let the observed magnitude y

depend on x in such a way that

y = a + bx..... (3)

It is required to determine the most probable values of a and b.

For perfect accuracy, we should have the following observation

equations :

a -f bx
l
-

y^
=

;
a + bx

2
-

y%
=

;
. . . a + bxn

-
yn

= 0.

In practice this is unattainable. Let v
lt

v.2 ,
. . . vn denote the

actual deviations so that

a + bx
l
-

y l
= v

l ;
a + bx.

2
-

y.2
= v

2 ;
. . . a + bxn

- yn = vn .

It is required to determine the constants so that,

2(<y2)
=

v-f + v.f + . . . + vn
2 is a minimum.

This condition is fulfilled (page 240) by equating the partial

derivatives of 2(v
2
)
with respect to a and 6 to zero. In this

way, we obtain,

a + bx -
y)

2 = 0, hence, 2(a + bx -
y)

=
;

^2(a + bx -
y)'

2 = 0, hence, 2x(a + bx -
y)

= 0.

If there are n observation equations, there are n a's and 3(a) = na,

therefore,

na + b$(x)
- :%) =

; a^(x) + b$(x
2
)
-

^(xy) = 0.

Now solve these two simultaneous equations for a and b,

. .

[2(z)]
2 -

nS(a?) [2(a;)]
2 -

n^(x^)
'

which determines the values of the constants.

The method of least squares assumes that the observations are

all equally reliable (see
" Errors of Observation," Chapter XL).

R
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Eeturning to the special case at the commencement of this

section, to find the best representative value of the constants a and

b in formula (1).

Previous to substitution in (4), it is best to arrange the data

according to the following scheme :

0.
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Si Xntiir,; 63, 489, 1901. The above method of treatment IB founded on

that of Kohlrausch in his Leitfaden der praktisdu-n I'lujxik (Teubner, Leipzig,

1896), p. 8. For other methods of calculating the constants, see Lupton's
.Wrs on Observations, p. 105, 1898

;
and 186.

KXVMPLES. (1) Find the law connecting the length (/) of a rod with

temperature (0), when the length of a metre bar at elongates with rise of

temperature according to the following scheme :

= 20, 48, 50, 60 C.
;

1 = 1000-22, 1000-65, 1000-90, 1001-05 mm.

(Kohlrausch, I.e.). During the calculation, for the sake of brevity, use

/ = -22, -65, -9 and 1-05. Assume I = a + be and show that a = 999-804,

b = 0-0212.

(2) Find a formula similar to (4) for the general equation y = a tan a + 6,

where a and b are constants to be determined.

(3) According to Bremer's measurements aqueous solutions of sodium

carbonate containing p /
of the salt expand by an amount v as indicated in

the following table :

p = 3-2420, 4-8122, 7'4587, 10-1400 ;

104 x v = 1-766, 2-046, 2-342, 2-732.

Hence show that if v = a + bp, a = 0-00012415, b = 0-00001528.

Suppose that instead of the general formula (3), we had

started with

y = a + bx + ex2
,

. . . (5)

where a, b and c are constants to be determined. The resulting

formulae for b and c (omitting a), analogous to (4), are,

These two formulae have been deduced by a similar method to

that employed in the preceding case, a is a constant to be

determined separately by arranging the experiment so that when
x = 0, a = yQ

.

EXAMPLES. (1) The following observations were made by Bremer. If p
denotes the density of an aqueous solution of calcium chloride at

U
C.,

9. p.

15-65 1-03336

20-11 1-03273

28-60 1-02856

e. p. I e. p.

33-40 1-02356

39-25 1-02640

46-01 1-02348

32-76 1-02051

63-23 1-01516

Calculate the constants a and b in the formula,

p = Po(l + ae + btf*),

where Po
= 1-03619. Ansr. b = - 0-000003301 ; a = - 0-0001126.

(2) The following series of measurements of the temperature (e) at different

depths (x) in an artesian well, were made at Grenelle (France) :



260 HIGHER MATHEMATICS. 106.

x = 28, 66, 173, 248, 298, 400, 505, 548
;

= 11-71, 12-90, 16-40, 20-00, 22-20, 23-75, 26-45, 27-70.

The mean temperature at the surface was 10-6. Hence show that at a depth
of x metres, the temperature will be,

e = 10-6 + 0-042096x - 0-000020558^2
.

(3) If, when x = 0, y = 1 and when
x = 8-97, 20-56, 36-10, 49-96, 62-38, 83'73 ;

y = 1-0078, 1-0184, 1-0317 1-0443, 1-0563, 1-0759.

Hence show that

y = 1 + 0-00084.K + 0-0000009z2 .

The reader will himself have to deduce the general formulae

for a, b, c, when still another correction term is included, namely,

y = ax + bx2 + ex3
. . . (8)

EXAMPLES. The following measurements are selected from a paper by

Thompson in Wiedemann's Annalen (44, 553, 1891).

(1) If when
x = 0-2, 0-4, 0-6, 0-8, 1-0, 1-2,

p = 5-531, 11-084, 16-671, 22-298, 27*949, 33-646,

show that
x = 27-578p + 0-3193p

2 + 0'0538p
3

.

(2) If when
x = 0-2, 0-4, 0-6, 0-8, 1-0,

p = 7-078, 14-196, 21-358, 28-558, 35-792,

show that
x = 35-2725p + 0-5725p

2 - 0'0525p
3

.

If three variables are to be investigated, we may use the

general formula
z = ax + by (9)

The reader may be able to prove, on the above lines, that

A rough and ready method for calculating the constants is to

pick out as many observation equations as there are unknowns

and solve for x, y, z, by ordinary a, b, c, say, algebraic methods.

The different values of the unknown corresponding to the different

sets of observation arbitrarily selected are thus ignored.

EXAMPLE. Corresponding values of the variables x and y are known, say,

#!> 2/i 5
X
2> 2/2 5 xs> 2/3 J

Calculate the constants a, b, c, in the interpolation

formula

y * o(10)*+1.
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When Xj = 0, .Vi
= . Thus b and c remain to be determined. Take logarithms

of the two equations in x2 , y.2 and a-3 , y3 and show that,

This method may be used with any of the above formulae when
an exact determination of the constants is of no particular interest,

or when the errors of observation are relatively small.

Graphic Method. Returning to the solubility determinations

at the beginning of this section, prick points corresponding to

pairs of values of v and 6 on squared paper. The points lie

approximately on a straight line. Stretch a black thread so as to

get the straight line which lies most evenly among the points.

Two points lying on the black thread line are v = 1*0, = 14-5,

and v = 1-7, B = 1-5,

.-. a + 14-56 = 1; a + 1-56 = 1-7.

By subtraction, b = - 0'54, .-. a = 1-78.

It is here assumed that the curve which goes most evenly

among the points represents the correct law (footnote, page 123).

In the example just considered, there is, perhaps, too small a

number of observations to show the method to advantage. Try
these :

p = 2, 4, 6, 8, 10, 20, 25, 30, 35, 40,

s = 1-02, 1-03, 1-06, 1-07, 1-09, 1-18, 1-23, 1-29, 1-34, 1-40,

where s denotes the density of aqueous solutions containing p /

of calcium chloride at 15 C. The selection of the best "black

thread
"

line is more uncertain the greater the magnitude of the

errors of observation affecting the measurements. The values

deduced for the constants will differ slightly with different

workers or even with the same worker at different times. With

care, and accurately ruled paper, the results are sufficiently accurate

for most practical requirements.
When the " best

"
curve has to be drawn freehand, the results

are more uncertain. For example, the amount of " active
"

oxy-

gen (y) contained in a solution of hydrogen dioxide in dilute

sulphuric acid was found, after the elapse of t days, to be :

t = 6, 9, 10, 14, 18, 27, 34, 38, 41, 54, 87,

y = 3-4, 3-1, 3-1, 2-6, 2-2, 1-3, 0-9, 0'7, 0-6, 0-4, 0-2,
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where y = 3 '9 when t = 0. We leave these measurements with

the reader as an exercise.

In Perry's Practical Mathematics (published by the Science and

Art Department, London, 1899, 6d.), a trial plotting on "logar-
ithmic paper" is recommended in certain cases. On squared

paper, the distances between the horizontal and vertical lines are

in fractions of a metre or of a foot. On logarithmic paper, the

distances between the lines are proportional to the logarithms of

the numbers. If, therefore, the experimental numbers follow a

law like

Iog10# + alog102/
= constant,

the function can be plotted as easily as on squared paper. If the

resulting graph is a straight line, we may be sure that we are

dealing with some such law as

xy
a = constant

; or, (x + a) (y + b)
a = constant.

EXAMPLE. The pressure (p) of saturated steam in pounds per square
inch when the volume is v cubic feet per pound is

p = 10, 20, 30, 40, 50, 60,

v = 37-80, 19-72, 13-48, 10-29, 8-34, 6-62.

(Gray's Smithsonian Physical Tables, 1896.) Hence, by plotting correspond-

ing values of p and v on logarithmic paper, we get the straight line :

logio-P + logio^ = logio& ; hence, po
1 * = 382,

since Iog106 = 2-5811, .-. b = 382 and a = 1-065.

Logarithmic paper is not difficult to make. The gradations on

the slide rule give the correct distances without calculation.

A semi-logarithmic paper may be made with distances be-

tween say the vertical columns in fractions of a metre, while the

distances between the horizontal columns are proportional to the

logarithms of the numbers. Functions obeying the compound
interest law will plot, on such paper, as a straight line. One

advantage of logarithmic papers is that the skill required for

drawing an accurate freehand curve is not required. The stretched

black thread will be found sufficient. With semi-logarithmic paper,

either

x + Iog102/
= constant

; or, y + Iog10
a; = constant

will give a straight line.

EXAMPLES. (1) Plot on semi-logarithmic paper Harcourt and Esson's

numbers
(I.e.)

:

t = 2, 5, 8, 11, 14, 17, 27, 31, 35, 44,

y = 94-8, 87-9, 81-3, 74-9, 68-7, 64-0, 49-3, 44-0, 39-1, 31-6,
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for the amount of substance y remaining in a reacting system after the elapse

of an interval of time t. Hence determine values for the constants a and 6 in

y = ae~ M
, i.e., in Iog107/ + bt = Iog10a,

a straight line on "
semi-log

"
paper.

(2) What " law " can you find in Perry's numbers (Proc. Roy. Soc., 23,

472, 1875),

6 = 58, 86, 148, 166, 188, 202, 210,

C = 0, -004, -018, -029, -051, -073, -090,

for the electrical conductivity C of glass at a temperature of 6 F. ?

(3) Evaluate the constant a in Arrhenius' formula, 77
= a*, for the viscosity

17 of an aqueous solution of sodium benzoate of concentration x, given

n = 1-6498, 1-2780, 1-1303, 1-0623,

107. Approximate Integration.

We have seen that the area enclosed by a curve can be esti-

mated by finding the value of a definite integral. This operation

may be reversed. The numerical value of a definite integral can be

determined from measurements of the area enclosed by the curve.

For instance, if the integral \f(x) . dx is unknown, the value of

I f(x) . dx can be found by plotting the curve y =
f(x), erecting

ordinates to the curve on the points x = a and x = b and then

measuring the surface bounded by the #-axis, the two ordinates

just drawn and the curve itself.

This area may be measured by means of the planimeter, an

instrument which automatically registers the area of any plane

figure when a tracer is passed round the boundary lines.*

Another way is to cut the figure out of a sheet of paper, or

other uniform material. Let w
1
be the weight of a known area a^

and w the weight of the piece cut out. The desired area x can

then be obtained by simple proportion,

w
l

: a = w : x.

Interpolation formulae may be used for the approximate evalu-

ation of any integral between certain limits. The problem may
be stated thus : Divide the curve into n portions bounded by
n + 1 equidistant ordinates y , yv y.2 ,

. . ., y,,,
whose magnitude

and common distance apart is known, it is required to find an

* A good description of these instruments will be found in the British Association's

Reports for 1894, page 496.
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approximate expression for the area so divided, that is to say, to

evaluate the integral

f"f(x) . dx.
Jo

Assuming Newton's interpolation formula we may write,

f(x) = 2/ + x\ + x(x -
1)A* + (1)

)
. dx = yTdx + *\[x . dx + [$x(x

-
!)<** + . . ., (2)

o Jo Jo Jo^ :

which is known as the Newton-Cotes integration formula. We
may now apply this to special cases, such as calculating the value

of a definite integral from a set of experimental measurements, etc.

1. Parabolic Formulae. Take three ordinates. Eeject all terms

after A2
. Eemember that A^ = y l

- y and A2 =
y.2

- fy l + y .

Let the common difference be unity,

f(x) . dx =
22/ + 2A 1 + |-A

2 = l(yQ + ^y l + y.2). (3)

If h represents the common distance of the ordinates apart, we
have the familiar result known as Simpson's one-third rule, thus,

.dx =

A graphic representation will perhaps make the assumptions in-

volved in this formula

more apparent.

Make the construc-

tion shown in Fig. 105.

We seek the area of

the portion ANN'A'

corresponding to the

integral f(x) . dx be-

tween the limits x = x$
FIG. 105. Approximate Integration. and x = x

llt
where f(x)

represents the equation to the curve ABC . . . MN.
Assume that each strip is bounded on one side by a parabolic curve.

Area CDEE'C' = Area of trapezium CEE'C' + Area parabolic

segment CED.
From well-known mensuration formulae (15), page 491,

CDEE'C' = C'E'[(CC' + EE') + %{DD'
-

$(CC' + EE')}] ;

(5)h(CC' + DD' + EE')
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Extend this discussion to include the whole figure,

Area ANN'A' =
J/i(l + 4 + 2 + 4 + . . . + 2 + 4 + 1), (6)

\\hore the successive coefficients of the perpendiculars AA', BB', . . .

alone are stated
;
h represents the distance of the strips apart. The

greater the number of equal parts into which the area is divided,

the more closely will the calculated correspond with true area.

Put OA' = x
;
ON = xn ;

A'N' = xn
- X

Q and divide the area

into n parts ; h =
(xn

- x )/n. Let t/ , ylt y2 ,
. . . yn denote the

successive ordinates erected upon Ox, then equation (6) may be

written in the form,

J*nJftx)
dx = *h{(y + y,,) + ifat + yz + . . . + yn _ ,) |^^

+ %2 + 2/4 + - - - +y-i) I

In practical work a great deal of trouble is avoided by making
the measurements at equal intervals x

l
- X

Q ,
x
2
- x

l ,
. . ., xn -xn _*.

EXAMPLE. In measuring the magnitude of an electric current by means
of the hydrogen voltameter, let C , Clt C2 ,

. . . denote the currents passing

through the galvanometer at the times tQ , t
lt

t2 ,
. . . minutes. The volume of

hydrogen liberated (v) will be equal to the product of the intensity of electri-

city (C amperes), the time (t), and the electrochemical equivalent of the

hydrogen x, (v = xCt).

Arrange the observations so that the galvanometer is read after the elapse
of equal intervals of time. Hence ^ - ? = t2

- ^ = tz
- tz

= . . . = h.

From (7),

C,+ . . . +C_ 1) + 2(C8+C4 + . . . +Cn _ 2){,

In an experiment, v = 0-22 when t = 3, and
t = 1-0, 1-5, 2-0, 2-5, 3-0, . . . ;

C = 1-53, 1-03, 0-90, 0-84, 0-57, . . .

' 0*5
C . dt =

-g-{(l-58
+ 0-57) + 4(1-03 + 0-84) + 2 x 0-90} = 1-897.

.-. x = -22/1-897 = 0-1159.

This example also illustrates how the value of an integral can be obtained

from a table of numerical measurements.
The result 0-1159, is better than if we had simply proceeded by what

appears, at first sight, the correct method (see (13) below), namely,

'.#- ft - < )QL+^i + (
/a

- t^^ + . . . = i-9i,

for then x = -22/1-91 = 0-1152.

The correct value is 0-116 nearly.

If we take four instead of the three ordinates in the preceding

discussion, we obtain
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where h denotes the distance of the ordinates apart, yQt yv . . .

the ordinates of the successive perpendiculars in the preceding

diagram. This formula is known as Simpson's three-eighths
rule.

If five, six or seven ordinates are taken, the corresponding
formulae are respectively

(&) - dx = &h(7y + 32
2/1 + 12y2 + 32y8 + 7y4). .

\'
Jo

f(x) . dx

. dx =

(9)

(10)

(11)

The last result, known as Weddle's rule, is said to give very
accurate results in mensuration problems.

All these formulae are discussed in Boole's Calculus of Finite Differences

(I.e.] under the heading
" Mechanical Quadrature ".

EXAMPLE. Evaluate the integral fxP.dx between the limits 1 and 11 by
the aid of formula (6), given h 1 and y , ylt y2 , y3 ,

. . . y8, y9 , yw are respec-

tively 1, 8, 27, 64, . . . , 1000, 1331. Compare the result with the absolutely

correct value. From (6),

TV . dx = (10970) = 3656-|.

By actual integration, the perfect result is,

-
i(l)

4 = 3660.

The reader will perhaps have met some of the above formulae in his

arithmetic (mensuration).

2. Trapezoidal Formulae. Instead of assuming each strip to

y M N
be the sum of a trapezium and a

parabolic segment, we may s^ty>P se

that each strip is a complete tra-

pezium. In Fig. 106, let AN be a

curve whose equation is y =
f(x) ;

AA', BB', . . . perpendiculars

drawn from the re-axis. The area

of the portion ANNA' is to be

Let OB' - OA' = OC' - OB' = . .
= h. It follows

C fr

FIG. 106.

determined.

from known mensuration formulae, (10), page 491,

Area ANNA' = \h(AA' + BB') + . . . + \(MM' + NN),
= h(AA'+ 1BB'= 2CC'+ . . . + VMM' + NN') t

=
fc(i + i + i + . . . + l + 1 + i), . (12)
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where the coefficients of the successive ordinates alone are written.

This result is known as the trapezoidal rule.

Let x
,
xv x.2 ,

. . .
,
xn ,

be the values of the abscissae corre-

sponding to the ordinates f/ , y lt y2 ,
. . .

, yn , then,

If
o?j

- x = x.
2
- x

l
= . . . = h, we get, by multiplying out,

CXH

J* ^

The trapezoidal rule, though more easily manipulated, is less

accurate than those based on the parabolic formula of Newton and

Cotes.

The following expression,

Area ANN'A' = h(^ + if + 1 + 1 + . . . + 1 + 1 + if + ^), (15)

or,

f*
ft r>\

I /\*/'
J^n

. . . +y n-^ (16)

is said to combine the accuracy of the parabolic rule with the

simplicity of the trapezoidal. It is called Durand's rule.

EXAMPLE. Evaluate the integral /
, by the approximate formulae

Jz x

(7), (14) and (16), assuming h = 1, n = 8. Find the absolute value of the

result and show that these approximation formulae give more accurate

results when the interval h is made smaller. Ansr. (7) gives 1-611, (12)

gives 1-629, (15) gives 1-616. The correct result is 1-610.

Lemoine (Annales de Chimie et de Physique [4], 27, 289, 1872) encountered

some non-integrable equations during his study of the action of heat on red

phosphorus. In consequence, he adopted these methods of approximation.
The resulting tables "calculated" and "observed" were very satisfactory.

For these, see the cited memoir.

Another method of approximate integration, of special import-
ance in practical work, will now be indicated.

108. Integration by Infinite Series.

It is a very common thing to find expressions not integrable

by the ordinary methods at our disposal. We may then resort

to the methods of the preceding section, or, if the integral can

be expanded in the form of a converging series of ascending
or descending powers of x, we can integrate each term of the
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expanded series separately and thus obtain any desired degree .of

accuracy by summing up a finite number of these terms.

If f(x) can be developed into a converging series, f(x) . dx is also

convergent. Thus if

f(x)
= 1 + x + x2 + x'3 + . . . +xn ~ l + x 11 + . . . (1)

\f(x).dx = x + }rf + \x*+ . . . +ir"+- xn+l + ... (2)
2i O Hj Tl -f- 1

Series (1) is convergent when x is less than unity, for all values of

n. Series (2) is convergent when nx/(n + 1) and therefore when
x is less than unity. The convergency of the two series thus

depends on the same condition. If the one is convergent, the

other must be the same.

If the reader is able to develop a function in terms of Taylor's

series, this method of integration will require but few words of

explanation. One illustration will suffice.

By division, or by Taylor's theorem,

\

f ^
' '

\ 1 | ^y.2

J 1 + X
jic*

j

. dx -\- ^x . dx \x . dx

x - x3 + -x5 -
. . . = tan

- lx.
o O

page 229, (6).

EXAMPLES. (1) Using the approximation of Simpson, (7) preceding sec-

tion, show that

C dx = tan _
12 _ tan-i! = 0-821751.

j I + x*

Verify the following results.

(7) How would you propose to integrate J(log10
a; . dx)l(l

-
a-)

in series ?

See also pages 188 and 355.

(8) The result of the following discussion is required later on. To find a

value for the integral
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Integrals of this type are extensively employed in the solution of physical

problems. A'.;/., in the investigation of the path of a ray of light through the

atmosphere (Kramp) ; the conduction of heat (Fourier) ; the secular cooling of

the earth (Kelvin), etc. One solution of the important differential equation

is represented by this integral. See also Chapter VIII., Jj 152 and 154. On
account of its paramount importance in the theory of errors of observation

(</. c.), (3) is sometimes called the error function, and written " erf x ".

Glaisher (Phil. Mag. [4], 42, 294, 421, 1871) and Pendlebury (ib., p. 437)

have given a list of integrals expressible in terms of the error function. The
numerical value of any integral which can be reduced to the error function,

may then be read off directly from known tables. See Chapter XI., 180

also Burgess, Trans. Roy. Soc. Edin., 39, 257, 1898.

NOTE. The error function (3) may be expressed as a gamma function,

^r(^), or ^V'T, from (12), 83.

The following ingenious method of integration is due to Gauss : If a sur-

face has the equation
z = e-(x

* +
^), ..... (4)

the volume included between this surface, the .z-plane (for which z = 0), the

x-plane (between the limits x = and x = oo) and the y-plane (between the

limits and oo), is given by the expression,

volume = I I e-^ + v^dx.dy =
/
e~^dxl e~y'

2

dy. . (5)
J J .'0 Jo

Let u denote the integral of the original equation, (3), then, it follows that

the volume in (5)
= u2 .

Again, if we express z in polar coordinates, since x? + y
2 = r2

,
z = e-*

2
,

the area of an element in the 2-plane becomes r.de.dr, instead of dy.dx.
In order that the limits may extend over the same part of the solid as before,

the integration limits must be transformed so that r extends over and oo

and 6 over and fa. Therefore the volume of the solid in polar coordinates, is

volume =
/

/ e~^r.de.dr.
Jo Jo

Integrate with respect to and

volume = fa I e~^r . dr.

Now multiply and divide by - 2-and integrate.

.. volume = -
^ir I e

~ r<i

J

= Jr.

.-. w2 =
Jir ; or, u = \ \V.

By successive reduction
( 75),

-**.4,-<>'-W-_* >.-*..*,. . ,6)

when n is odd, and

when n is even.
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All these integrals are of considerable importance in the kinetic theory
of gases and in the theory of probability. Common integrals in the former

theory are

Vir Jo \>irJo
._ ^.^ . .

From (7), the first one may be written %Nma?, the latter, JZNal \/TT.

If the limits are finite, as, for instance, in the probability integral,

P =
/= I e

- h2
^d(hx).

VirJ
Put hx = t, then

Develop e
- f2 into a series by Maclaurin's theorem, as just done in example (4)

above. The result is that

2

may be used for small values of t.

For large values, integrate by parts,

1
-<

From (4), page 185,

l'e-
a
dt = fe-^dt - r*-*dt.

Jo Jo J t

_
The first integral on the right-hand side = ^N/TT. Integrating the second

between the limits oo and t

p-'i--^S(i-i-+pJ-2y^+...).
- . (io)

This series converges rapidly for large values of t. From this expression the

value of P can be found with any desired degree of accuracy.



PART II.

ADVANCED.

CHAPTER VI.

HYPERBOLIC FUNCTIONS.

109. Euler's Exponential Values of the Sine and Cosine.

THERE are certain combinations of the exponential functions which

are frequently employed in the various branches of physics. These

functions bear the same formal resemblance to one half of a rect-

angular hyperbola that the circular functions of trignometry do to

the circle, hence their name hyperbolic functions.

Hyberbolic functions have now become so incorporated with

practical formulae that it is necessary to have at least an elementary

knowledge of their properties.

Returning to the imaginary *J - 1, i has no physical meaning,
it is an abstract mathematical concept to which mathematicians

have arbitrarily applied the fundamental laws of algebra distri-

butive law, commutative (" relatively free ") law, and the index

law. See footnotes, pages 175 and 304.

In 98, (9) and (11), the following series were developed :

x2 xs x2 x*
e" = 1 +# + 2T+3~i + '

5
e
~* = l ~ x +

21 ~3~[
+ -

C
1
)

If we substitute ix in place of x (see footnote, page 175), we obtain,

LX x1
ix"' x4 tx

r

-T"2T"3T +
^!

+ 5T--'- ;

x2 x* \ (x xs xb

-
2T

+
4T

-
)
+
<T

-
3T+5T

-
'

By reference to page 229, we shall find that the first expression in

brackets, is the cosine series, the second, the sine series. Hence,
e 1 -'' = cos x + L sin x. ... (3)
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In the same way, it can be shown that

X1

Or, e
~ LX = cos x -

i sin x. . . . (5)

Combining equations (3) and (5),

1(01*
- e

-
**)

= i sin a; ; (e
ix + e~ LX

)
= cos x. . (6)

110. The Derivation of Hyperbolic Functions.

Every point on the perimeter of a circle is equidistant from the

centre, therefore, the radius of any given circle has a constant

magnitude, whatever portion of the arc be taken.

In plane trignometry, an angle is conveniently measured as a

function of the arc of a circle. Thus, if /' denotes the length of

an arc of a circle subtending an angle 6 at the centre, r' the radius

of the circle, then

arc _ l_~
radius r''

This is called the circular measure of an angle and, for this reason,

trignometrical functions are sometimes called circular functions.

This property is possessed by no plane curve other than the

circle. For instance, the hyperbola, though symmetrically placed

with respect to its centre, is not at all points equidistant from it.

The same thing is true of the ellipse. The parabola has no centre.

If I denotes the length of the arc of any hyperbola which cuts

the re-axis at a distance r from the centre, the ratio

I

u = -,
r

is called an hyperbolic function of u, just as the ratio l'/r' is a

circular function of 6.

To find a value for the ratio u = l/r. For the rectangular

hyperbola

y =
J(tf>

- a2
) ; .-. dy/dx = x/ J(x*

- a2
). . (1)

The length of any small portion dl of the arc of an hyperbola is,

by 81,

/ //7/\ 2 . /Q/y2 _ /,2

dl =
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The distance r of any point (x, y) from the origin on this curve, is

- a2

If x
l

is the abscissa of any point on the hyperbola, a the

abscissa of the starting point,

_-
IX" a, a,

Put x for x
l and, remembering that logee = 1,

u log e = log (x + V#2 - a2
)/a ; a

.
.

or, e
u =

(a; * .**,
.-. (e

u -
z/a)

2 = aW -
1, or 2xeu/a = e2

" + 1
;

. ?=^u + e -) V ^'

CL

But this relation is practically that developed for cos x, (6), of

the preceding section, ix, of course, being written for u. The ratio

x/a is defined as the hyperbolic cosine of u. It is usually written

cosh u and pronounced
" cosh u" or " h-cosine u ". Hence,

cosh u =
^(e

u + e~ w
)
= l+^ +

j-j
+ ... (2)

In the same way, proceeding from (1), it can be shown that

y =
Ix*

_ _
/e2

" + 2 + e
- 2u

_ _ /e
2M - 2 + e

-

a relation previously developed for i sin aj. The ratio y/a is called

the hyperbolic sine of u, written sinh u, pronounced
" shin u,"

or " h-sine u ". As before
n 1 3 At5

sinh ?t = J(e
M -e- M

)
= w+^y + ^y+... (3)

The remaining four hyperbolic functions, analogous to the

remaining four trignometrical functions, are tanh u (pronounced
" h-tan u," or "tank w"), cosech u, sech u and coth u. Values for

each of these functions may be deduced from their relations with

sinh u and cosh u. Thus,

sinh u 1
tanh u = r ; sech u =

cosh u '

cosh u '

\

coth u =
. ; cosech u
tanh u '

sinh
Unlike the circular functions, the ratios x/a, y/a, when referred

to the hyperbola, do not represent angles. An hyperbolic function
S
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expresses a certain relation between the coordinates of a given point
on the arc of a rectangular hyperbola.

Let (Fig. 107) be the centre

of the hyperbola APB, described

about the coordinate axes Ox, Oy.
From any point P(x, y) drop a per-

pendicular PM on to the #-axis.

Let OM = x, PM =
y, OA = a.

.'. coshu = xfa; sinhu =
y/a.

For the rectangular hyperbola,
FIG. 107. x <2 -

y*
= a2

.

.. a2sinh2w - o.
2cosh% = a2

; or, sinh% - cosh2^ = 1.

The last formula thus resembles the well-known,
cos'2x + sin2# = 1.

Draw P'M a tangent to the circle AP' at P. Drop a perpendicular
PM' on to the ic-axis. Let the angle M'OP = 0.

.-. x/a = sec0 = coshw
; y/a = tan# = sinhw. . (5)

In example (5)., page 279, it is shown that the area AOP' = ^a
2

and of AOP =
\cPu. From equations, page 273, it follows that

e
u = cosh u 4- sinh u = sec + tan 0.

u =
log(sec(9 + tan0) =

Iogtan(j7r + 0), . (6)

and tanh \u = tan |0. . . . (7)

When is connected with u by any of the four relations (5),

(6) and (7), 6 is said to be the Gudermannian of u and written

= gd%. The Gudermannian function, therefore, connects the

circular with the hyperbolic functions.

111. The Graphic Representation of the Hyperbolic
Functions.

We have seen that the trignometrical sine, cosine, etc., are

periodic functions. The hyperbolic functions are exponential, not

periodic.* This will be evident from the following diagrams (Figs.

* Since cos x and sin x are periodic functions, cos x + i sin x repeats its value every

time x is increased by 2w
;

it therefore follows that elx also repeats its value every time

x is increased by 2ir. In this particular case eix is said to be an imaginary iwrfoitii:

function of x.

To illustrate the periodic nature of the symbol i, suppose \/ - 1 represents the

symbol of an operation which when repeated twice changes the sign of the subject of

the operation, and when repeated four times restores the subject of the operation to

its original form. For instance, if we twice operate on x with s/ - 1, we get
-

x, or
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108, 109, 110), which represent graphs of the six hyperbolic

functions.

V
108. Graphs of tanh x and

coth x.

FIG. 109. Graphs of cosh x and
sech x.

(\'~i )*
= *,

and so on in cycles of four. If the imaginary quantities o:,
-

ix, . . . are plotted on

the y-axis (axis of imaginaries), and the real quantities x,
-

x, ... on the avaxis

(d.ri* <>f reals), the operation of \/ - 1 on x will rotate x through 90, two operations

will rotate x through 180, three operations will rotate x through 270, and four

operations will carry x back to its original position.

Since 2i sin x = elX - e
~ iar

,
if x = v, sin v =

0,

. . el1t - e
~ Llr =

; or, <e
t7r = e

~ t7r
,

meaning that the function etx has the same value when x = ir and when x = - v. From
the last equation,

But

= g log a; +

which means that the addition of 2tir to the logarithm of any quantity has the effect

of multiplying it by unity, and will not change its value. Every real quantity, there-

f ,->>, has one real logarithm and an infinite number of imaginary logarithms differing

by 2j/r, where n is an integer.

When any function has two or more values for any assigned real or imaginary

value of the independent variable, it is said to be a multiple-valued function. Such

are logarithmic, irrational algebraic, and inverse trignometrical functions. The

imaginary values in no way interfere with the ordinary arithmetical ones. A single-

valued function assumes one single value for any assigned (real or imaginary) value of

tin- independent variable. For example, rational algebraic, exponential and trigno-

metrical functions are single-valued functions.

There are several interesting relations between sin x and e*. Thus, if

y = a sin qt + b sin qt, (Py/dP =-q*y, dy*/dt* = q*y ;

y = et, d*y/dt* = q*y ; iPy/dP = q*y, etc.
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The graph
y = cosh re,

is known in statics as the "catenary". Tanhsc and cothrc have

an imaginary period TTI, the remaining hyperbolic functions have

the imaginary period 2?.

FIG. 110. Graphs of sinh x and cosecha;.

112. Transformation and Conversion Formulae.

(i.) To pass from trignometrical to hyperbolic functions and vice

versa. By substituting J 1 . x, or, ix in place of u in equations

(2) and (3), 110, we obtain

cosx. . . (1)

Or,

cosh ix
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113. Inverse Hyperbolic Functions.

The inverse hyperbolic functions are denned in the same way
as the inverse trignometrical functions, that is to say,

smh- l

y = x,

is another way of stating that

y = sinh re.

These inverse functions can be expressed as logarithmic func-

tions, since,

y = sinha? = ^(e
x - e~ r

),

.-. &* -
fye* -1 = 0.

Solve as a quadratic.
.-.

* = y Vy2 + l.

For real values of x, the negative sign is excluded in the case of

sinh l

y, and

*/
= log{y + VyTT>. (!)

Similarly cosh~ l
y = \og{y Jy* - 1} ; (2)

Here (Fig. 109) we can use either value.

+ y)/(l
-

y) ;
. . (3)

+ l)f(y
-

1) ; . . (4)

= log {1 + x/1 -
y*\ly ; . . (5)

cosech~ l

y = log {1 + >/l -f- y
2
\/y. . . (6)

114. Differentiation and Integration of the Hyperbolic
Functions.

The functions may be differentiated in a similar manner to the

ordinary trignometrical functions. The symbol V - 1 is treated

as if it were a constant real quantity. Thus, let

y = sinhrr =f(x), -'.f(x -f h)
= sinh(# + h).

dy _ j-. sinh(ic + h)
- ainhh

T . 2 sinh $h . cosh(ic + $h)

The limit of amhu/u when u = 0, is unity (page 505), just as in

the somewhat analogous sin BIB = 1, when 6 becomes vanishingly

small.

.-. dy/dx = d(smhx)/dx = cosh a;.
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This is proved more directly as follows :

d(smhx)/dx =
d{^(e

x - e~ x
)}/dx

=
\(e

x + e~ x
)
= coshic.

For the inverse hyperbolic functions, let

y = sinh l
x,

.-. dx/dy = coshy.
From (5), 112,

coshy = v/sinh
2
2/ + 1

;
.-. coshy = -Jx

2 + 1,

from the original function to be differentiated.

.. dy/dx = I/ \/#
2 + 1.

EXAMPLE. If y = cosh mx + sinh mx, show that

d2
y/dx

z = m2
y.

A standard collection of results of the differentiation and inte-

gration of hyperbolic functions, is set forth in the following table:

TABLE III. STANDARD INTEGRALS.

Function.
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place of the independent variable. Such equations are very common in

electrotechnics. It is convenient to remember, as in 73, that x = a tanh u,

= tanh u may be put in place of \/aa - x'2, or Vl - xa
; similarly,

x = a cosh u may be tried in place of \'x2 - a"8
;
x = a sinh w for Vx8 + a2.

(1) Evaluate
J
x/x2 a2

. dx. Substitute x = a sinh M in Vx^+a2
,
and

x = rt cosh /tin s ./- - <r.

.-.
|

v.e^+'rt2
. fZx- = ia

2
j(cosh

2w 1) . rf//
;

= |
2 sinh2 + ^a

2 = %a sinh zt . a cosh w + ^a
2
!*.

= & v'i*
2 2

) *
2
log {x + x/(*

2
a*)}/a + C.

a2 x
The "

log
" terms can be written -^ sinh

~ a- in the one case, and

a- ''

-Q-
cosh ~ !- in the other. Verify the next three results :

Sub8titute x . a 8inh .

(See page 506.)

(5) Find the area of the segment OPA (Fig. 107) of the rectangular

hyperbola x2 - y
1 = 1.

Put x = cosh u\ y = sinh w. (See (5), 112.)

/. Area APM = / y .dx = / sinh2
z* . dw,

Ji Jo

=
/ (cosh <2u - l).du = % sinh 2 -

%u.
J o

.-. Area 0PM = $ Area PJtf . OM - Area ^1P3I = %u.

Note the area. of the circular sector OP'A (same figure) = 0, where 6 is

the angle AOP'.

(6) Rectify the catenary curve y = cosh xjc measured from its lowest

point. Ansr. I = c sinh xjc. Note I = when x = 0, .'. C = 0.

(7) Rectify the curve y
z = lax (see example (1), page 187). The expres-

sion N/(l + ajx)dx has to be integrated. Hint. Substitute x = a sinh2^.

2rtJcosh
2

. du remains. Ansr. =
j(l + cosh 2u}du, or a(^ + sinh2w). At

vertex, where x = 0, sinh u = 0, C 0.

Show that the portion bounded by an ordinate passing through the

focus has I = 2-296. Hint. Diagrams are a great help in fixing limits.

Note x =
,

.-. sinhw = 1, coshw = v2, from (5), 112. From (1), 113,

sinh
~ J1 = u = log(l + \/2). From (20), page 505, sinh 2w = 2 sinh u . cosh M.

I =
|ju

+ sinh 2it~T = u + sinh u . cosh u = log(l + \'2) + v'2.

Use Table of Natural Logarithms, Chapter XIII.

(8) Show that y = A cosh mx + B sinh mx, satisfies the equation of

d'ty/dx^ = w2
x, where m, .4 and B are undetermined constants. Note the

resemblance of this result with a solution of d^y/dx
2 = - n2

x, which is

y = A cos nx + B sin nx.
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115. Demoivre's Theorem.

Refer to the footnote, page 175. Since

cos #!
=

i(e
t:ci + e

- ia;

i) ;
t sin x

l
=

%(e
ixi - e-^),

and e^i = cos x
l + t sin x

1 ;
e
~ ta:i = cos o^ t sin x

lt

if we substitute wa; for x
lt
where n is any real quantity, positive or

negative, integral or fractional,

cos nx =
^(e

tnx + e
~ tnx

) ; sin nx =
\(&-

nx - e~ inx
).

By addition and subtraction and a comparison with the preceding

expressions,
cos nx + L sin nx e =

(cos x + t sin x)
n
\

cos nx - i sin nx = e
- inx =

(cos x -
L sin x)

n
)

' '

Note e* = y, (e
x
)
n= y

n
, or, e = y

n
.

Equations (1) are known as Demoivre's theorem.

EXAMPLES. (1) Verify the following result and compare it with Demoivre's

theorem :

(cos x + i sin #)
2 = (cos

2x - sin2#) + 2t sin x . cos x
;

cos 2x + t sin 2x.

(2) Show e* + & = ewP = e*(cos )8 + t sin /3),

(3) Show j"ez(cos ftx + t sin ftx)dx = eoa;(cos &x + i sin /8a;)/(a + i)8) ;

(cos &x + i sin flx) (a
-

t/3)

a2 + )8
2

aj(a cos j8x + )8 sin )8x) + t(
-

j8 cos 0x + a sin #c)

a2 + )8
2

Demoivre's theorem is employed in algebra in the solving of certain cubic

equations. The integration of quadratic expressions of the type
Ax + B

{(x + a)
2 + fi

2
}*'

may sometimes be effected by substituting x + a = b tan B
;
at others, it is

recommended to split the quadratic into its so-called conjugate factors,

x + a + ib, and x + a - tb. Integrate and reduce the result to a real form

by means of Demoivre's theorem.

For a fuller discussion on the properties of hyperbolic functions, consult

Chrystal's Textbook of Algebra, Part ii. (A. & C. Black, London), also Merriman

and Woodward's Higher Mathematics (Wiley & Sons, New York, 1898), page

107; and Greenhill's A Cliapter in the Integral Calculus (F. Hodgson, London).

116. Numerical Values of the Hyperbolic Sines and

Cosines.

Tables IV. and V. (pages 510 and 511) contain numerical values

of the hyperbolic sines and cosines for values of x from to 5, at
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intervals of O'Ol. They have been checked by comparison with

Des Ingenieurs Taschenbuch, edited by the Hiitte Academy (von
Ernst & Korn, Berlin, 1877).

The tables are used exactly like the ordinary logarithmic tables.

Numerical values of the other functions can be easily deduced

from those of sinh x and cosh x by the aid of equations (4), 110.



282

CHAPTER VII.

HOW TO SOLVE DIFFERENTIAL EQUATIONS.

THIS chapter may be looked upon as a sequel to that on the

integral calculus, but of a more advanced character. The
" methods of integration

"
already described will be found ample

for most physico-chemical processes, but chemists are proving

every day that more powerful methods will soon have to be

brought in. As an illustration, I may refer to the set of differ-

ential equations which Geitel encountered in his study of the

velocity of hydrolysis of the triglycerides by acetic acid (Journal

fur praktische Chemie [2], 55, 429, 1897).

I have previously pointed out that in the effort to find the

relations between phenomena, the attempt is made to prove that

if a limited number of hypotheses are prevised, the observed facts

are a necessary consequence of these assumptions. The modus

operandi is as follows :

1. To "
anticipate Nature

"
by means of a "

working hy-

pothesis," which is possibly nothing more than a " convenient

fiction ".

"From the practical point of view," says Professor Rucker (Presidential

Address to the B. A. meeting at Glasgow, September, 1901),
"

it is a matter of

secondary importance whether our theories and assumptions are correct, if

only they guide us to results in accord with facts. . . . By their aid we can

foresee the results of combinations of causes which would otherwise elude us."

2. Thence to deduce an equation representing the momentary
rate of change of the two variables under investigation.

3. Then to integrate the equation so obtained in order to

reproduce the "working hypothesis" in a mathematical form

suitable for experimental verification (see 18, 69, 88, 89, and

elsewhere).

So far as we are concerned this is the ultimate object of our

integration. By the process of integration we are said to solve

the equation.
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For the sake of convenience, any equation containing differ-

entials or differential coefficients will, after this, be called a
differential equation.

117. The Solution of a Differential Equation by the

Separation of the Variables.

The different equations hitherto considered have required but

little preliminary arrangement before integration. For example,
when preparing the equations representing the velocity of a

chemical reaction of the general type :

dx/dt =
kf(x), .... (1)

we have invariably collected all the x's to one side, the t's, to the

other, before proceeding to the integration.

This separation of the variables is nearly always attempted
before resorting to other artifices for the solution of the differential

equation, because the integration is then comparatively simple.

The following examples will serve to emphasise these remarks :

EXAMPLES. (1) Integrate the equation, y . dx + x . dy = 0. Rearrange
the terms so that

by multiplying through with l/xy. Ansr. log x + log y = C.

Two or more apparently different answers may be the same. Thus, the

solution of the preceding equation may also be written,

logxy log ec
, i.e., xy = e; or log xy = log C', i.e., xy = C'.

C and log C' are, of course, the arbitrary constants of integration.

(2) The equation for the rectilinear motion of a particle under the in-

fluence of an attractive force from a fixed point is

v . dvjdx + nix
2 = 0.

Solve. Ansr. v2 = pjx + C.

(3) Solve (l+x*)dy = ^fy.dx. Ansr. 2 Jy - tan- 1* = C.

(4) Solve y - x.dyjdx = a(y + dy/dx). Ansr. y = C(a + x)(
l ~ al

(5) In consequence of imperfect insulation, the charge on an electrified

body is dissipated at a rate proportional to the magnitude E of the charge.

Hence show that if a is a constant depending on the nature of the body, and

EQ represents the magnitude of the charge when t (time) = 0,

E = E e-*.
.

Hint. Compound interest law. Integrate by the separation of the variables.

Interpret your result.

(6) Abegg's formula for the relation between the dielectric constant (D) of

a fluid and temperature 6, is

= D/190.
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Hence show that D = Cte-0/190
,
where C is a constant whose value is to be

determined from the conditions of the experiment. Put- the answer into

words.

(7) What curves have a slope
-

x(y to the x-axis ? Ansr. The rectangular

hyperbolas xy = C. Hint. Set up the proper differential equation and solve.

(8) The relation between small changes of pressure and volume of a gas
under adiabatic conditions, is ypdv + vdp= 0. Hence show that pvn constant.

(9) A lecturer discussing the physical properties of substances at very low

temperatures, remarked "
it appears that the specific heat of a substance de-

creases with decreasing temperatures at a rate proportional to the specific

heat of the substance itself ". Set up the differential equation to represent
this "law" and put your result in a form suitable for experimental verification.

(10) Helmholtz's equation for the strength of an electric current (C) at the

time t, is

E L<W
L ~ R

~
R dt'

where E represents the electromotive force in a circuit of resistance R and

self-induction L. If E, R, L, are constants, show that RC = E(l - e~ RtlL
)

provided C = 0, when t = 0.

A substitution will often enable an equation to be treated by
this simple method of solution.

EXAMPLE. Solve (x
-

y*)dx + 2xydy = 0. Ansr. xe^ lx = C. Hint, put

t/
2 = v, divide by x2

, .. dx/x + d(vjx) = 0, etc.

If the equation is homogeneous in x and y, that is to say, if

the sum of the exponents of the variables in each term is of the

same degree, a preliminary substitution of x =
ty, or y = to, ac-

cording to convenience, will always enable variables to be separated.

The rule for the substitution is to treat the differential coefficient

which involves the smallest number of terms.

EXAMPLES. (1) Solve x + y . dy/dx - 2y = 0. Substitute y = tx,

Ansr. (x
- y)e*H*-) = C.

(2) If (y
- x)dy + ydx = 0, y = Ce~*b.

(3) If x*dy - y*dx - xydx = 0, x = *'+ C.

(4) (x
2 + if)dx = Zxydy, x* -

y* = Cx.

Non-homogeneous equations in x and y can be converted into

the homogeneous form by a suitable substitution.

The most general type of a non-homogeneous equation of the

first degree is,

(ax + by + c)dx + (a'x + b'y + c')dy
= 0. . (2)



< 117. HOW TO SOLVE DIFFERENTIAL EQl'A'l l<>\- JM.%

To convert this into an homogeneous equation, assume that

x = v + h and y = w + k,

and substitute in the given equation (2). Thus, we obtain

\av + bw + (ah + bk + c)}dv +\a'v + b'w + (a'h + b'k + c')\dw = 0. (3)

Find h and k so that

ah + bk + c = ;
a'h + b'k + c' = 0.

, b'c - be' ac' - a'c
.-. h = _~-- -

;
k = -77

--
jj. . . (4)a b - ab '

$b - ab

Substitute these values of h and k in (3). The resulting equation

(av + biv)dv + (a'v + b'w)dw = 0, . (5)

is homogeneous and, therefore, may be solved as just indicated.

EXAMPLES. (1) Solve (3y
- 7x -

l)dx + (ly
- 3x -

3)dy = 0. Ansr.

(y
- x - 1)% + x + I)

6 = C. Hints. From (2), a = - 7, 6 = 3, c = -7;
a' = - 3, b' = 7, c' = - 3. From (4),

h = -
1, k = 0. Hence, from (3),

Sivdv - Ivdv + Itcdw - Svdw = 0.

To solve this homogeneous equation, substitute w = vt, as above, and separate

the variables.

dv 3 - It -,. fdv
'

.-. 7 log v + 2 log(*
-

1) + 5 log(t + 1)
= C

; or, v>(t
-

l)
2
(i + 1)'

= C.

But x = v + h, .. v = x + 1 ; y = w + k, .-. y = w ; .. t = wfv = yf(x + 1), etc.

(2) If (2y
- x - l)dy + (2z

- y + l)dx = 0, x2 - xy + i/
2 + x - y = C.

If in (3),

a : b = a' : b' = 1 : m (say),

h and k are indeterminate, since (2) then becomes,

(ax + by + c)dx + {m(ax + by) + c'}dy
= 0.

The denominators in equations (4) also vanish. In this case put
z = ax + by

and eliminate y, thus, we obtain,

, z + c dz na + b _ + = 0, . . . (6)mz + c ax

an equation which allows the variables to be separated.

EXAMPLES. (1) Solve (2x + Sy - 5)dy + (2x + Sy - l)dx = 0.

Ansr. x + y - 4 log(2x- + Sy + 7)
= C.

(2) Solve (3y + 2x + )dx
- (x + &y + 5)dy = 0.

Ansr. 91og{(2l7/ + Ux + 22)/7}
- 21(2#

-
x) = C.

When the variables cannot be separated in a satisfactory manner,

special artifices must be adopted. We shall find it the simplest

plan to adopt the routine method of referring each artifice to the

particular class of equation which it is best calculated to solve.
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These special devices are sometimes far neater and quicker pro-
cesses of solution than the method just described.

We shall follow the conventional x and y rather more closely

than in the earlier part of this work. The reader will know, by
this time, that his x and y's, his p and i?'s and his s and t's are

not to be kept in "
water-tight compartments ",

It is perhaps necessary to make a few general remarks on the

nomenclature.

118. What is a Differential Equation?

We have seen that the straight line,

y = mx + b, . . . . (1)

fulfils two special conditions :

1. It cuts one of the coordinate axes at a distance b from the

-origin.

2. It makes an angle tan a = m, with the #-axis.

By differentiation.

? =
(2)

ax

This equation has nothing at all to say about the constant b.

That condition has been eliminated. Equation (2), therefore,

represents a straight line fulfilling one condition, namely, that

it makes an angle tan -1w with the ic-axis.

Now substitute (2) in (1), the resulting equation,

-& + * . . . - (3)

in virtue of the constant b, satisfies only one definite condition,

(3), therefore, is the equation of any straight line passing through
b. Nothing is said about the magnitude of the angle tan

~ lm.

Differentiate (2). The resulting equation,

^-0 (4)
dx2

represents any straight line whatever. The special conditions

imposed by the constants m and b in (1), have been entirely

eliminated. Equation (4) is the most general equation of a

straight line possible, for it may be applied to any straight line

that can be drawn in a plane.

Let us now find a physical meaning for the differential equa-

tion.
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In $ 7, we have found that the third differential coefficient,

//
3
represents "the rate of change of acceleration from moment

to moment ". Suppose that the acceleration d'2s/dt'
2

,
of a moving

body does not change or vary in any way. It is apparent that the

i ;itc of change of a constant or uniform acceleration must be zero.

In mathematical language, this is written,

d*s/dt* = 0. .' . . . (0)

Now integrate this equation once. We obtain,

d2
s/dt

2 = constant, say =
g. . . (6)

Equation (6) tells us not only that the acceleration is constant, but

it fixes that value to the definite magnitude <j
ft. per second.

But acceleration measures the rate of change of velocity. In-

tegrate (6), we get,

dsfdt =
gt + C

l
..... (7)

From 72, we have learnt how to find the meaning of Cv Put

t = 0, then dx/dt = Cr This means that when we begin to reckon

the velocity, the body may have been moving with a definite velocity

(\ . Let Cj = v ft. per second. Of course, if the body started from

a position of rest, C
l
= 0.

Now integrate (7) and find the value of C
2
in the result,

s = 1^2 + V(f + C
2 , , .".... (8)

by putting t = 0. It is thus apparent that C.
2 represents the space

which the body had traversed when we began to study its motion.

Let C.2
= s ft. The resulting equation

^ = \gP + V + *
0>

. . (9)

tells us three different things about the moving body at the instant

we began to take its motion into consideration.

1. It had traversed a distance of s ft. To use a sporting

phrase, if the body is starting from "scratch," s = 0.

2. The body was moving with a velocity of i' ft. per second.

3. The velocity was increasing at the uniform rate of #ft. per
second.

Equation (7) tells us the two latter facts about the moving

body ; equation (6) only tells us the third fact
; equation (5) tells

us nothing more than that the acceleration is constant. (5), there-

fore, is true of the motion of any body moving with a uniform

acceleration.

EXAMPLE. If a body falls in the air, experiment shows that the retarding
effect of the resisting air is proportional to the square of the velocity of the

moving body. Instead of g, therefore, we must write g -
/30

s
,
where is the
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variation constant of page 487. For the sake of simplicity, put ft = g/a? and"

show that
gfftla _ e

- gtla ft
2 egtla + c -gtla a2 Q t

v -V + .-..
; S -

g
10g- -V - -

(,-

J g C 8hi
since w = when i = 0, and s = when < = 0.

Similar reasoning holds good from whatever sources we may
draw our illustrations. We are, therefore, able to say that a,

differential equation, freed from constants, is the most general way
of expressing a natural law.

Any equation can be freed from its constants by combining it

with the various equations obtained by differentiation of the given

equation as many times as there are constants. The operation is

called elimination.

EXAMPLES. (1) Eliminate the arbitrary constants a and 6, from

y = ax + bxz.

Differentiate twice and combine the results with the original equation. The

result,

is quite free from the arbitrary restrictions imposed in virtue of the presence
of the constants a and b in the original equation.

(2) Eliminate m from y
2 = 4=mx. Ansr. y

2 = 2x . dy/dx.

(3) Eliminate a and ft from y a cos x + sin x. Ansr. dzy/dx
2 + y = 0.

(4) Eliminate a and ft from y = aeax + fte
bx

.

Ansr. d2
y/dx*

-
(a + b) . dyfdx + aby = 0.

(5) Eliminate k from dx/dt = k(a -
x) of 69. What does the resulting.

equation mean ?

We always assume that every differential equation has been

obtained by the elimination of constants from a given equation
called the primitive. In practical work we are not so much
concerned with the building up of a differential equation by the

elimination of constants from the primitive, as with the reverse

operation of finding the primitive from which the differential

equation has been derived. In other words, we have to find

some relation between the variables which will satisfy the differ-

ential equation. Given an expression involving x, y, dx/dy,,

d2
x/dy

2
,

. . ., to find an equation containing only x, y and

constants which can be reconverted into the original equation

by the elimination of the constants.

This relation between the variables and constants which satisfies

the given differential equation is called a general solution, or a

complete solution, or a complete integral of the differential
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equation. A solution obtained by giving particular values to the

arbitrary constants of the complete solution is a particular solution.

Thus y = mx is a complete solution oiy = x. dy/dx ; y = x tan 45,

is a particular solution.

A differential equation is ordinary or partial, according as

there is one or more than one independent variables present.

Ordinary differential equations will be treated first.

Equations like (2) and (3) above, are said to be of the first

order, because the highest derivative present is of the first order.

For a similar reason (4) and (6) are of the second order, (5) of the

third order. The order of a differential equation, therefore, is

fixed by that of the highest differential coefficient it contains. The

degree of a differential equation is the highest power of the

highest order of differential coefficient it contains. Thus,

g + tfft*+**:Adx2 \dx)

is of the second order and third degree.

It is not difficult to show that the complete integral of a differ-

ential equation of the nth order, contains n and only n arbitrary

constants.

We shall first consider equations of the first order.

119. Exact Differential Equations of the First Order.

The reason many differential equations are so difficult to solve

is due to the fact that they have been formed by the elimination

of constants as well as by the elision of some common factor from

the primitive. Such an equation, therefore, does not actually re-

present the complete or total differential of the original equation

or primitive. The equation is then said to be inexact. On the

other hand, an exact differential equation is one that has been

obtained by the differentiation of a function of x and y and per-

forming no other operation involving x and y.

Easy tests were described in 24, 25, to determine whether

any given differential equation is exact or inexact. It was pointed

out that the differential equation,

H.dx + N.dy = Q, . . . (1)

is the direct result of the differentiation of any function
, provided,
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This last result was called the criterion of integrability, because,

if an equation satisfies the test, the integration can be readily

performed by a direct process. This is not meant to imply that

only such equations can be integrated as satisfy the test, for many
equations which do not satisfy the test can be solved in other

ways.

EXAMPLES. (1) Apply the test to the equations,

ydx + xdy = 0, and ydx - xdy = 0.

In the former, M =
y, N x

;

.-. VM/dy = 1, -dNftx = I
; .-. dM/Vy = dN/dx.

The test is, therefore, satisfied and the equation is exact. In the other

equation, M = y, N = -
x,

.-. dM/dy = 1, 'dNl'dx = - l.

This does not satisfy the test. In consequence, the equation cannot be solved

by the method for exact differential equations.

(2) Is the equation, (x + 2y)xdx + (x
2 -

y*)dy = 0, exact ? M = x(x + 2y),

N = z2 -
if ;

.-. *dM[dy = 2x, 'dNl'dx = 2x. The condition is satisfied, the

.equation is exact.

(3) Show that (a?y + x*)dx + (6
3 + a?x)dy = 0, is exact.

^4) Show that (sin y + y cos x)dx + (sin x + x cos y)dy = 0, is exact.

To integrate an equation which satisfies the criterion of in-

tegrability, we must remember that M is the differential coefficient

of u with respect to x, y being constant, and N is the differential

coefficient of u with respect to y, x being constant. Hence we

may integrate Mdx on the supposition that y is constant and then

treat Ndy as if x were a constant. The complete solution of the

whole equation is obtained by equating the* sum of these two

integrals to an undetermined constant. The complete integral is

u = C (3)

EXAMPLES. (1) Integrate x(x + 2y)dx + (x
2 - y

2
)dy = 0, from the pre-

ceding set of examples. Since the equation is exact,

M=x(x + 2y) ; JV = .r
2 - y

2
;

.-. jMdx = jx(x + 2y)dx = %x* + x*y = Y,

where Yis the integration constant which may, or may not, contain y, because

y has here been regarded as a constant.

Now the result of differentiating

$x* + x*y = Y,

should be the original equation. On trial, ,

x2dx + Zxydx + x*dy = dY.

On comparison with the original equation, it is apparent that

dY=y*dy; .'. Y = $y* + C.

Substitute this in the preceding result. The complete solution is, therefore,

la-s + x* - i* = C.
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To summarise: The method detailed in the example just given may be

put into a more practical shape.

To integrate an exact differential equation, first find JA/ .dr on the as-

sumption that y is constant and substitute the result in

C. ... (4)

With the old example, therefore, having found \Mdx, we may write down at

once

.-. Ix* + x*y + J(z
2 -

7/2
_ xz)dy = C.

And the old result follows directly. If we had wished we could have used

I
Ndy + f(M

-
J^fNdy\dx

= C,

in place of (4).

In practice it is often convenient to modify this procedure. If the equa-
tion satisfies the criterion of integrability, we can easily pick out terms which

make Mdx + Ndy = 0, and get

Mdx + Y and Ndy + X,

where Y cannot contain x and X cannot contain ?/. Hence if we find Mdy
and Ndx, the functions X and F will be determined.

In the above equation, the only terms containing x and y are Ixydx + x2dy t

which obviously have been derived from .r
2
?/. Hence integration of these and

the omitted terms gives the above result.

(2) Solve (x
2 - 4xy - 2y

2
)dx + (?/

2 - xy - 2x2
)dy = 0. Pick out terms

in .1- and y, we get
- (xy + 2if)dx

-
(4xy + 2x*)dy = 0.

Integrate. .. - 2x2
y -

~2xy
2 = constant.

Pick out the omitted terms and integrate for the complete solution. We get,

jx
2dx + jy

2
dy - 2x2

y - 2xy
2 = x3 - Gx2?/ - 6xy* + if = constant.

(3) Show that the .solution of (a?y + x?)dx + (6
:{ + a?x)dy = 0, is

a?xy + bsy + $s? = C. Use (4).

(4) Solve (x
2 -

y*)dx
- Zxydy = 0. Ansr. ^x

2 - y
2 = Cfx. Use (4).

Equations made exact by means of integrating factors. As just

pointed out, the reason any differential equation does not satisfy the

criterion of exactness, is because the "
integrating factor

"
has been

cancelled out during the genesis of the equation from its primitive.

If, therefore, the equation
Mdx + Ndy = 0,

does not satisfy the criterion of integrability, it will do so when

the factor, previously divided out, is restored. Thus, the pre-

ceding equation is made exact by multiplying through with the

integrating factor
/x. Hence,

p.(Mdx + Ndy) = 0,

satisfies the criterion of exactness, and the solution can be obtained

as described above.



292 HIGHER MATHEMATICS. 120.

120. How to find Integrating Factors.

Sometimes integrating factors are so. simple that they can be

detected by simple inspection.

EXAMPLES. (1) ydx - xdy = is inexact. It becomes exact by multipli-

cation with either x~ 2
,
x~ l

. y
1

,
or y

2
.

(2) In (y
- x)dy + ydx = 0, the term containing ydx - xdy is not exact,

but becomes so when multiplied as in the preceding example.

... *L - x^ - ydx =
;
or log y - * = C.

y y
2

y
For the general theorems concerning the properties of integrating factors,

the reader must consult some special treatise, say Boole's A Treatise on

Differential Equations, pages 55 et seq., 1865.

We have already established, in 26, that an integrating factor

always exists which will make the equation
Mdx + Ndy = 0,

an exact differential.

Moreover, there is also an infinite number of such factors, for

if the equation is made exact when multiplied by ju,,
it will remain

exact when multiplied by any function of /x.

The different integrating factors correspond to the various forms

in which the solution of the equation may present itself. For

instance, the integrating factor x~ l

y~
l

,
of ydx + xdy = 0, corre-

sponds with the solution log x + log y = C. The factor y
~ 2 corre-

sponds with the solution xy C".

Unfortunately, it is of no assistance to know that every
differential equation has an infinite number of integrating factors.

No general practical method is known for finding them. Here

are a few elementary rules applicable to special cases.

Rule I. Since

d(x
m
y")

= xm
~ 1

y
n ~ l

(mydx + nxdy),
an expression of the type mydx + nxdy = 0, has an integrating

factor xm
~ 1

y
n ~ 1

', or, the expression
xa
y
B
(mydx + nxdy) = 0, . . (1)

has an integrating factor

or more generally still,

^-i-Y-i-0, . (2)

where k may have any value whatever.

EXAMPLE. Find an integrating factor of ydx - xdy = 0. Here, o = 0,

/8
= 0, m = 1, n = - 1 .. ?/~

2 is an integrating factor of the given equation.
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If the expression can be written

x?yt(mydx '+ nxdy) + x*'yP(m'ydx + n'xdy) = 0, . (3)

the integrating factor can be readily obtained, for

z*'-i -<y- 1-0; and :**'""- ^y""- 1

-*',

are integrating factors of the first and second members respectively.

In order that these factors may be identical,

km - 1 - a = k'm' - I - a
;
kn - 1 -

ft
= k'ri - 1 -

ft'.

Values of k and k' can be obtained to satisfy these two conditions

by solving these two equations. Thus,

k = n'(a
-

a)
-

m'(ft
-

ft')
k

, = n(a
-

a)
-

m(ft
-

ft')

mri - mn mri - m'n

EXAMPLES. (1) Solve y*(ydx
- 2xdy) + x4

(2ydx + xdy) = 0. Hints. Show
that a = 0, 3 = 3, m = 1, n = - 2

; a' = 4, j8'
= 0, m' = 2, ri = 1

;
.-.

xk-iy-2k-4 js an integrating factor of the first, a2*'- 5
!/*'-

1 of the second

^member. Hence, from (4), k = -
2, k' = 1, .-.

,
x~ 3 is an integrating factor

of the whole expression. Multiply through and integrate for 2x*y
-

y* = Cx2-

(2) Solve (y
3 - 2yx

z
)dx + (2xy

2 - x3)dy = 0. Ansr. xzy*(y* - x2
)
= C. In-

tegrating factor deduced after rearranging the equation is xy.

Rule II. If the equation is homogeneous and of the form :

Mdx + Ndy = 0, then (Mx + Ny)
~ 1 is an integrating factor.

Let the expression

Mdx + Ndy = 0,

be of the mth degree and /x an integrating factor of the ?*th degree,

.-. pMdx + fjiNdy = du, ... (5)

is of the (w + ?i)th degree, and the integral n is of the (w + w + l)th

degree.

By Euler's theorem, 22,

.-. fjiMx + fj.Ny
= (m + n + l)u. . . (6)

Divide (5) by (6),

Mdx + Ndy _ 1 du

MX + Ny m + n + 1 u
'

The right side of this equation is a complete differential, conse-

quently, the left side is also a complete differential. Therefore,

(Mx -|- Ny)~
l has made Mdx + Ndy = an exact differential

equation.

EXAMPLES. (1) Show that (x*y
- xy*)-

1 is an integrating factor of

(z
2
?/ + y*)dx - 2xy-dy = 0.

(2) Show that ll(x'
2 -ny + if) is an integrating factor of ydy + (j:-ny)dx= Q.

The method, of course, cannot be used if Mx + Ny is equal to zero. In

this case, we may write y = Ox, a solution.
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Rule III. If the equation is of the form,

fi(, y)ydx + fz(x, y)xdy = 0,

then (Mx Ny)~
l is an integrating factor.

EXAMPLE. Solve (1 + xy)ydx + (1
-
xy)xdy 0. Hint. Show that the

integrating factor is l/2x
2
y
2

. Divide out . .. $Mdx = \\xy + \ogx. Ansr.

x = Cye~ llxy.

If MX - Ny = 0, the method fails and xy = C is then a solution of the

equation. E.g., (1 + xy)ydx + (1 + xy)xdy = 0.

Rule IY. If if - \ is a function of x only, e
f dx

is an
N\ oy ox )

integrating factor. Or, if W ^
---

-y- J
=

f(y), then erf(y)dy is an

integrating factor. These are important results.

EXAMPLES. (1) Solve (x
2 + y^dx - Zxydy = 0. Ansr. x2 - y

2 = Cx.

Hint. Show f(x)
= -

2/<c. The integrating factor is, therefore,

e ~f2dx]x _ e log I/a:
2 _

ljx
2

f

(Why ?)
Prove that this is an integrating factor, and solve as in the pre-

ceding section.

(2) Solve
(7/

4 + 2y)dx + (xy
3 + 2y

4
-4:x)dy = 0. Ansr. xy* + y

4 + 2x = Cy2
.

(3) We may prove the rule for a special case in the following manner.

The steps will serve to recall some of the principles established in some

earlier chapters.

Let *L + Py = Q, ..... (Q

where P and Q are either constant or functions of x. Let p be an integrating

factor which makes

dy + (Py - Q)dx = 0, .... (8)

an exact differential.

.'. pdy + n(Py - Q)dx = Ndy + Mdx.

I -

= (Py - Q&dx +
dy

= - dy + Padx.

+ ]^
dy

and since \og,.e
= 1.

($Pdx)loge
= logjw; .'.

yu.
= e-'

rdx
. ... (9)

This result will be employed in dealing with linear equations, 122.
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121. The First Law of Thermodynamics.

According to the discussion at the end of the first chapter, one

way of stating the first law of thermodynamics is as follows :

dQ = dU + dW,
which means that when a quantity of heat, dQ, is added to a

substance, one part of the heat is spent in changing the internal

energy, dU, of the substance and another part, dW, is spent in

doing work against external forces. In the special case, when
that work is expansion against atmospheric pressure, dW = p . dv,

as shown in 91. See (11), page 524.

We know that the condition of a substance is completely
defined by any two of the three variables p, v, 0, because when

any two of these three variables is known, the third can be deduced

from the relation

pv = BO.

Hence it is assumed that the internal energy of the substance is

completely defined when any two of these variables are known.

Now let the substance pass from any state A to another state

B (Fig. 111). The internal energy of the substance in the state B
is completely determined by the coordin-

f ates of that point, because U is quite

independent of the nature of the trans-

formation from the state A to the state B.

It makes no difference to the magnitude of

^ U whether that path has been via APB
or AQB. In this case U is said to be a

FIG. ill.
single-valued function completely defined

by the coordinates of the point corresponding to any given state.

In other words, dU is a complete differential. Hence

is an exact differential equation, where x and y represent any pair

of the variables p, r, 0.

On the other hand, the external work done during the trans-

formation from the one state to another, depends not only on the

initial and final states of the substance, but also on the nature of

the path described in passing from the state A to the state B.

For example, the substance may perform the work represented by

the area AQBB'A' or by the area APBB'A', in its passage from the
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state A to the state B. In fact the total work done in the passage
from A to B and back again, is represented by the area APBQ
(page 183). In order to know the work done during the passage
from the state A to the state B, it is not only necessary to know
the initial and final states of the substance as denned by the co-

ordinates of the points A and B, but we must know the nature of

the path from the one state to the other.

Similarly, the quantity of heat supplied to the body in passing
from one state to the other, not only depends on the initial and

final states of the substance but also on the nature of the trans-

formation.

All this is implied when it is said that " dW and dQ are not

perfect differentials ". Although we can write

we must put, in the case of W or Q,

Therefore the partial differentiation of x with respect to y, furnishes

a complete differential equation only when we multiply through
with the integrating factor

/*, so that

where x and y may represent any pair of the variables p, v, 0.

The integrating factor is proved in thermodynamics to be equiva-

lent to the so-called Carnot'sfunction (see Preston's Theory of Heat).

To indicate that dPFand dQ are not perfect differentials, some

writers superscribe a comma to the top right-hand corner of the

differential sign. The above equation would then be written,

d'Q = dU + d'W.

122. Linear Differential Equations of the First Order.

A linear differential equation of the first order involves only

the first power of the dependent variable y and of its first

differential coefficients. The general type is,

s + ^-e
where P and Q may be functions of x, or constants.
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We have just proved that ef
pd*

is an integrating factor of (1),

therefore

efpdx(dy + Pydx) = ejrdxQdx,

is an exact differential equation. The general solution is,

ye
/N* = le**Qdx + C. . . . (2)

The linear equation is one of the most important in applied mathe-

matics. In particular cases the integrating factor may assume a

very simple form.

In the following examples, remember that elog * = x, .. if

=
logrc, e' l>djc = x.

EXAMPLES. (1) Solve (1 + x*)dy = (m + xy}dx. Reduce to the form (1)

and we obtain

dy_ _ x _ m
dx 1 + x*

y ~
I + x2

'

\Pdx
= - ^^ = -

\ log (1 + *2
)
- -

log

Remembering log 1 = 0, loge = 1, the integrating factor is evidently,

log e rpox = log 1 _
log \/l + a;

2
,
or efp** = ^ + ^.

Multiply the original equation with this integrating factor, and solve the

resulting exact equation as 119, (4), or, better still, by (2) above. The

solution : y = mx + C *J(1 + x2
)
follows at once.

(2) Ohm's law far a variable current flowing in a circuit with a coefficient

of self-induction L (henries), a resistance R (ohms), and a current of C

((amperes) and an electromotive force E (volts), is given by the equation,

E = RC + lg.
This equation has the standard linear form (1). If E is constant, show that

the solution is,

C = E/R + Be- RtlL
,

where B is the arbitrary constant of integration (page 159). Show that C

Approximates to E/R after the current has been flowing some time (/).
Hint

for solution. Integrating factor is e l{tlL
.

(3) The equation of motion of a particle subject to a resistance varying

directly as the velocity and as some force which is a given function of the

time, is

dv/dt + AT = /(/).

Show that v = Ce- kt + e
~ kt

}'e

kt
f(t)dt.

If the force is gravitational, say g,

v = Ce - kt + g\k.

(4) Solve xdy + ydx = x?dx. Integrating factor= x. Ansr. y = [r
3 + C/r.

Many equations may be transformed into the linear type of

equation, by a change in the variable. Thus, in the so-called

Bernoulli's equation,

dyldx + Py = Qy"..... (3)
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Divide by y", multiply by (1
-

n) and substitute y
l ~ n = v, in the

result. Thus,

and dv/dx + (1
- n)Pv = Q(l

-
TO),

which is linear in v. Hence, the solution is

C.

C.

EXAMPLES. (1) Solve cfy/dz + T//X
=

y'
2
. Treat as above, substituting

v = \\y. The integration factor is e -/<**/* =e- lo* x =
I/a.

Ansr. CXT/ - a,
1

// log a; = 1.

(2) Solve dy/da + a; sin2
?/
= jj

:J cos2
?/. Divide by cos2?/. Put tan # = v..

The integration factor is e/2***, i^M ^2
. Ansr. e*

2
tan y -

Je^(a;
2 -

1)
= C.

Hint to solve ve*2 = jx
sex2dx + C. Put a;

2 = ,.. 2a%fo = dz, and this integral

becomes ^ze
z
dz, or -ie

z
(^

-
1), etc.

(3) Here is an instructive differential equation, which Harcourt and Esson-

encountered during their work on chemical dynamics in '66.

I.4 + 5_^.o
y'
2 dx y x

I shall give a method of solution in full, so as to revise some preceding work.

The equation has the same form as Bernoulli's. Therefore, substitute

1 . dv 1 dy

..
^a; x

an equation linear in v. The integrating factor is

e-
fp

**, or, e -**; g, in (2),
- - j

therefore, from (2) ve
~ Kx = -

/ e
~ Kjrdx + C.

From 108,

x 1.2 1.2.3
But v = l/y. Multiply through with ye

x
*, and integrate.

We shall require this result on page 333.

123. Differential Equations of the First Order and of the

First or Higher Degree. Solution by Differentiation.

Case i. The equation can be split up into factors. If the

differential equation can be resolved into n factors of the first

degree, equate each factor to zero and solve each of the n equa-
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tions separately. The n solutions may be left either distinct, or

combined into one.

EXAMPLES. (1) Solve x(dxldy)* = y. Resolve into factors of the first

degree,

dx/dy = ^'yjx.

Separate the variables and integrate,

x/x ^'y= N/C,

which, on rationalisation, becomes

(*
-

y)
z - 2C(x + y) + C2 = 0.

Geometrically this equation represents a system of parabolic curves each

of which touches the axis at a distance C from the origin. The separate

equations of the above solution merely represent different branches of the

same parabola.

(2) Solve .i-y(dyldx)~
-

(x-
- y

2
)dy/dx

- xy = 0. Ansr. xy = C, or x2 - y
2 = C.

Hint. Factors (,rp + y) (yp
-

x), where p = dyjdx.

(3) Solve (dyldxY - Idyjdx + 12 = 0. Ansr. y = 4x + C, or 3* + C.

Case ii. The equation cannot be resolved into factors, but it can

be solved for x, y, dy/dx, or y/x. An equation which cannot be

resolved into factors, can often be expressed in terms of x, y, dy/dx,

or y x, according to circumstances. The differential coefficient of

the one variable with respect to the other may be then obtained

by solving for dyi'dx and using the result to eliminate dy/dx from

the given equation.

EXAMPLES. (1) Solve dyjdx + 2xy = x* + if. Since (x
-

y)- = x2 - 2xy + y\

y = x + \dyldx.

Diflerentiate ***-'1 + S

Separate the variables x and p, where p = dyjdx, and solve for dyjdx,

Idjj C + **

.-. Ansr. y = x + (C + e**)/(C
-

?**).

(2) Solve x(dyldx)
z -

toj(dyjdx) + ax = 0. Ansr. y = $C(x* + o/C). Hint.

Substitute for p. Solve for y and differentiate. Substitute pdx for dy, and

clear of fractions. The variables p and x can be separated. Integrate.

p = xC. Substitute in the given equation for the answer.

(3) Solve y(dyldx)* + 2x(dyldx)
-

y
> = 0. Ansr. y* - C(2x + C). Hint.

Solve for x. Differentiate and substitute dy/p for dx, and proceed as in

example (2). yp = C, etc.

Case iii. The equation cannot be resolved into factors, x or y is

absent. If x is absent solve for dy/dx or y according to conveni-

ence ;
if y is absent, solve for dx/dy or x. Differentiate the result

with respect to the absent letter if necessary and solve in the

regular way.
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EXAMPLES. (1) Solve (dyjdx)
2 + x(dy/dx) + 1 = 0. For the sake of greater

ease, substitute > for dx/dy. The given equation thus reduces to

x=p + l/p (1)

Differentiate with regard to the absent letter y, thus,

p = (l- llp*)dpldy; or, dy/dp = 1/p
-

l/p".

.-. y = log_p + l/2p
2 + C (2)

Combining (1) and (2), we get the required solution.

(2) Solve dy/dx = y + 1/y. Ansr. 7/
2 = Ce2* - 1.

(3) Solve dyjdx = x + I/or. Ansr. y = z2 + log x + C.

124. Glairaut's Equation.

The general type of this equation is,

or, writing p = dy/dx, for the sake of convenience,

y=px+f(p). . (2)

Many equations of the first degree in x and y can be reduced

to this form by a more or less obvious transformation of the vari-

ables, and solved in the following way :

Differentiate (2) with respect to x, and equate the result to zero.

Hence either =
; or, x + f(p) = 0.

dx

If the former,

dp/dx = 0; .-.p = C,

where C is an arbitrary constant. Hence,

dy = Cdx
; or, y = Cx + /(C),

is a solution of the given equation.

Again, p in x + f(p) may be a solution of the given equation.
To find p, eliminate p between

y = px + f(p), and x + f(p) = 0.

The resulting equation between x and y also satisfies the given

equation.

There are thus two classes of solutions to Glairaut's equation.

EXAMPLES. Find both solutions in the following equations :

(1) y = px + p2
. Ansr. Cx + C2 = y and x2 + ty = 0.

(2) (y
-
px} (p

-
1)
= p. Ansr. (y

- Cx} (C - 1)
= C ; N/2/ + v/.r = 1. Bead

over 67.
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125. Singular Solutions.

Clairaut's equation introduces us to a new idea. Hitherto we
have assumed that whenever a function of x and y satisfies an

equation, that function plus an arbitrary constant, represents the

complete or general solution. We now find that functions of x
and y can sometimes be found to satisfy the given equation, which,

unlike the particular solution, are not included in the general

solution.

This function must be considered a solution, because it satisfies

the given equation. But the existence of such a solution is quite

an accidental property confined to special equations, hence their

cognomen, singular solutions.

To take the simple illustration of page 142,

y = px + alp. . (1)

Eemembering that p has been written for dy/dx, differentiate with

respect to x, we get, on rearranging terms,

(x
-

a/p
2
)dp/dx = 0,

where either x -
a/p

2 =
; dp/dx = 0.

If the latter,

p = C
; or, y = Cx + a/C. (2)

If the former, p = Ja/x, which gives, when substituted in (l) r

the solution,

y
2 = ax (3)

This solution is not included in the general solution, but yet it

satisfies the given equation. (3) is the singular solution of (1).

Equation* (2), the complete solution of (1), has been shown to

represent a system of straight lines which differ only in the value

of the arbitrary constant C
; equation (3), containing no arbitrary

constant, is an equation to the common parabola. A point moving
on this parabola has, at any instant, the same value of dy/dx as if

it were moving on the tangent of the parabola, or on one of the

straight lines of equation (2). The singular solution of a differential

equation is geometrically equivalent to the envelope of the family of

curves represented by the general solution. The singular solution

is distinguished from the particular solution, in that the latter is

contained in the general solution, the former is not.

Again referring to Fig. 78, it will be noticed that for any point

on the envelope, there are two equal values of p or dy/dx, one for

the parabola, one for the straight line.
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In order that the quadratic

ax2 + bx + c = 0,

may have equal roots, it is necessary (page 388) that

b2 = 4ac
; or, b2 - 4ac = 0.

This relation is called the discriminant. From (1), since

y = px + a/p ; .*, xp
2 - yp + a = 0.

In order that equation (5) may have equal roots,

(5)

as in (4). This relation is the locus of all points for which two values

of p become equal, hence it is called the p-discriminant of (1).

In the same way if C be regarded as variable in the general

solution (2),

y = Cx + a/C
; or, xC2 - yC + a = 0.

The condition for equal roots, is that

y
2 = &ax,

which is the locus of all points for which the value of C is the

same. It is called t^e C-discriminant.

Before applying these ideas to special cases, we may note that

the envelope locus may be a single curve (Fig. 78) or several

(Fig. 79). For an exhaustive discussion of the properties of

these discriminant relations I must refer the reader to the

numerous textbooks on the subject, or to Cayley, Messenger of

Mathematics, 2, 6, 1872. To summarise :

1. The envelope locus satisfies the original equation but is

not included in the general solution (see xx', Fig. 112).

FIG. 112. Nodal and Tac Loci.

2. The tac locus is the locus passing through the several

points where two non-consecutive members of a family of curves

touch. Such a locus is represented by the line AB (Fig. 79), PQ
(Fig. 112). The tac locus does not satisfy the original equation,
it appears in the ^-discriminant, but not in the C-discriminant.
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8, The node locus is the locus passing through the different

points where each curve of a given family crosses itself (the point

of intersection node may be double, triple, etc.). The node

locus does not satisfy the original equation, it appears in the

C-discriminant but not in the ^-discriminant. BS (Fig. 112) is a

nodal locus passing through the nodes A, . . ., J5, . . ., C, . . ., .V.

4. The cusp locus

passes through all the

cusps (page 136) formed by
the members of a family

of curves. The cusp locus

does not satisfy the original

equation, it appears in the &
p- and in the C-discrimin- FIG. 113. Cusp Locus,

ants. It is the line Ox in Fig. 113. Sometimes the nodal or

cusp loci coincides with the envelope locus.*

EXAMPLES. Find the singular solutions and the nature of the other loci

in the following equations :

(1) x2
!)
2 - 2yp + ax = 0.

For equal roots y
2 = ax2

. This satisfies the original equation and is not

included in the general solution : x2 - 2Cy + aC2 0. y
2 = ax2 is thus the

singular solution.

(2) 4xp
2 = (3x

-
a)

2
. General solution : (x + C)

2 = x(x
-

a)
2

.

For equal roots in p, x(3x
-

a)
2

0, or x(3x
-

a)
2 = (^-discriminant).

.For equal roots in C, differentiate the general solution with respect to C.

Therefore (x + tydxjdC - 0, or C = - a1

. .-. x(x
-

a)
2 = (C-discriminant)

is the condition to be fulfilled when the C-discriminant has equal roots.

x = is common to the two discriminants and satisfies the original equation

(singular solution) ;
x = a satisfies the C-discriminant but not the ^-dis-

criminant and, since it is not a solution of the original equation, x = a

represents the node locus; x = $a satisfies the p- but not the C-discriminaut

nor the original equation (tac locus).

(3) p2 + 2xp - y = 0.

General solution : (2x
:i + 3xy + C)

2 = 4(x
2 + z/)

:t

; ^-discriminant : x2 + y = ;

C-discriminant : (x
2 + y)

s = 0. The original equation is not satisfied by
either of these equations and, therefore, there is no singular solution. Since

{x
2 + y) appears in both discriminants, it represents a cusp locus.

(4) Show that the complete solution of the equation, y'
2
(p* + 1) = a2

, is

y
2 + (x

-
C)

2 = a2
; that there are two singular solutions, y = + a ; that

there -is a tac locus on the x-axis for y =
(Fig. 79, see also $ 138).

* The second part of van der Waals' The Continuity of the Gaseous and

of Aggregation Binun/ Mi. tin res (1900) has some examples of the preceding

mathematics".
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126. Trajectories.

This section will serve as an exercise on some preceding work. A trajectory-

is a curve which cuts another system of curves at a constant angle. If this

angle is 90 the curve is an orthogonal trajectory.

EXAMPLES. (1) Let xy = C be a system of rectangular hyperbolas, to

find the orthogonal trajectory, first eliminate C by differentiation with respect

to x, thus we obtain,

xdy/dx + y = 0.

If two curves are at right angles (^ = 90), then from (17), 32, n-= (a
-

o) r

where a, a' are the angles made by tangents to the curves at the point of

intersection with the a?-axis. But by the same formula,

tan (+ ?r) (tan a - tan a)/(l + tan a . tan a').

Now tan + \ir
= oo and 1

/
GO = 0,

.*. tan a - cot o
; or, dy/dx = -

dx/dy.*
The differential equation of the one family is obtained from that of the

other by substituting dy/dx for -
dx\dy. Hence the equation to the orthogonal

trajectory of the system of rectangular hyperbolas is, xdx + ydy = 0, or

x2 - y
2 = C, a system of rectangular hyperbolas whose axes coincide with

the asymptotes of the given system.

(2) For polar coordinates show that we must substitute -
dr/r . d6 for

r . de/dr.

(3) Find the orthogonal trajectories of the system of parabolas y
2 = lax*

Ansr. Ellipses, 2 2 + y* = C2
.

(4) Show that the orthogonal trajectories of the equipotential curves
y
%

llr - llr' = C. are the magnetic curves cos + cos 9' = C.

127. Symbols of Operation. "IJjjt .. W*
j ',.*'-

It will be found convenient to denote the symbol of the operation
"
d/dx" by the letter "D". If we assume that the infinitesimal increments

of the independent variable dx have the same magnitude, whatever be the

value of aj, we can suppose D to have a constant value. Thus
d d2 dA

AlA-D", , stand for^^^3" -

dy d^y d3y
Dy,D*y, . . ., stand for ^, ^, ^, ...

The operations denoted by the symbols D, D2
,

. . ., satisfy the elementary
rules of algebra except that they are not commutative f with regard to the

variables. For example,

* No doubt the reader sees that in (18), 12, dx/dy is the cotangent of the angle

whose tangent is dy/dx.

t The so-called fundamental laws of algebra are : I. The laio of association : The

number of things in any group is independent of the order. II. The commutative law :

(a) Addition. The number of things in any number of groups is independent of the

order, (b) Multiplication. The product of two numbers is independent of the
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D(u + v +...) = Du + Dv + . . . , (distributive law).

D(Cu) = CDu, (commutative law),

where C is a constant. We cannot write D(xy) = D(yx). But,
h 'iyu - Dm + nu (index law),

is true when m and n are positive integers. If

Du = v
;
u D - l v

; or, u =
J~M ;

.-. v = D.D~ l
v, or, D.D- 1 = 1;

that is to say, by operating with D upon D~ l
v, we annul the effect of the

D- 1

operator. It is necessary to remember later on, that if Dx = 1,

_1-V -L-. J.^
D*

-
2

' D3
~

2 . 3
'

In this notation, the equation

g-<. + * + ,,
= 0.

is written,

{D
2 -

(a + )D + a)8}?/
=

; or, (D -
a) (D - fiy = 0.

Now replace D with the original symbol, and operate on one factor with y.

Thus,

By operating on the second factor with the first, we get the original equation
back again.

128. The Linear Equation of the nth Order.

(General Remarks.)

As a general rule the higher orders of differential equations
are more difficult of solution than equations of the first order. As

with the latter, the more expeditious mode of treatment will be to

refer the given equation to a set of standard cases having certain

distinguishing characters. By far the most important class is the

linear equation.

A linear equation of the nth order is one in which the de-

pendent variable and its n derivatives are all of the first degree
and are not multiplied together. The typical form in which it

appears is

++-. .+**-*. w

order. III. The distributive law : (a) Multiplication. The multiplier may be distri-

buted over each term of the multiplicand, e.g., m(a + b)
= ma + mb. (b) Division.

(a + b)/m = a/m + b/m. IV. The index law ; (a) Multiplication. a'a = + ".

(b) Division. am/an = am - ".

U
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Or, in symbolic notation,

Dy + X^*-^ + . . . + Xny = X
y

where X, Xv . . .
,
Xn are either constant magnitudes, or func-

tions of the independent variable x. If the coefficient of the

highest derivative be other than unity, the other terms of the

equation can be divided by this coefficient. The equation will

thus assume the typical form (1). We have studied the linear

equation of the first order in 123. For the sake of fixing our

ideas, the equation

+&*-*> --(*)
of the second order, will be taken as typical of the class. P, Q, R
have the meaning above attached to X

lt
X

2 ,
X.

The general solution of the linear equation is made up of two

parts.

1. The complementary function which is the most general

solution of the left-hand side of equation (2) equated to zero, or,

d*y/dx* + Pdy/dx + Qy = 0. . . (3)

'The complementary function involves two arbitrary constants.

2. The particular integral which is any solution of the

original equation (2), the simpler the better. In particular cases

when the right-hand side is zero, the particular integral does not

occur.

To show that the general solution of (2) contains a general solu-

tion of (3). Assume that the complete solution of (2) may be

written,

y = u + v, . . . . (4)

where v is any function of x which satisfies (2), that is to say, v is

the particular integral
* of (2), u is the general solution of (3), to

be determined. Substitute (4) in (2).

*? + Pp + Qu + p>
+ P^ + QV - B .

dx2 dx dx2 dx

But .

x
.

dx

therefore, + P + Qu = 0.
dx'2 dx

Therefore, u must satisfy (3).

Given a particular solution* of the linear equation, to find the

* Not to be confused with the particular solution of page 289.
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complete solution. Let y = v be a particular solution of the

following equation,

where P and Q are functions of x. Substitute y = ur,

d2u fndv r, \du n

This equation is of the first order and linear with du/dx as the

dependent variable. Put dn/dx = z and

, +(<&. + Pv}z =0;
*

+ 2
dv

+ Pdx = 0;
dx \ dx ) z v

log + 2 log, + \Pdx = 0; or,
< = C-'"*.

2 ; or, y =

where C
l
and C

2
are arbitrary constants.

EXAMPLES. (1) If y = eax is a particular solution of (Pyldx
1 = dhj, show

that the complete solution is y = C^"* + C^~ ax
.

(2) If y = x is a particular solution of (1
-

x*)d*yldx*
- xdy/dx + y = 0,

the complete solution is y = C
l N/(l

- x2
) + C^x.

If a particular solution of the linear equation is known, the

order of the equation can be lowered by unity. This follows directly

from the preceding result. If y = v is a known solution, then,

if y = tv be substituted in the first member of the equation, the

coefficient of t in the result, will be the same as if t were constant

and therefore zero, t being absent, the result will be a linear equa-

tion in t but of an order less by unity than that of the given equation.

It follows directly, that if n particular solutions of the equation are

known, the order of the equation can be reduced n times.

For the description of a machine designed for solving (3), see

Proceedings of the Eoyal Society; 24, 269, 1876 (Lord Kelvin).

129. The Linear Equation with Constant Coefficients.

The integration of these equations obviously resolves itself into

finding the complementary function and the particular integral.

First, when the second member is zero, in other words, to find

the complementary function of any linear equation with constant

coefficients. The typical equation is,

+ p + g, = o, . . . (i)
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where P and Q are constants. The particular integral does not

appear in the solution.

If the equation were of the first order, its solution would be,

y = Ce/tndx
. On substituting e

mx
for y in (1), we obtain

(m
2 + Pm + Q)e

mx = 0,

provided m2 + Pm + Q = 0. . . . (2)

This equation is called the auxiliary equation. If m
l
be one

value of m which satisfies (2), then y = e
m
^, is an integral of (1).

But we must go further.

Case 1. When the auxiliary equation has tiuo unequal roots,

say ml
and m

2 ,
the general solution of (1) may be written down

without any further trouble.

y =
C^'-i* + C

2
e
m
*. ... (3)

EXAMPLES. (1) Solve (D- + 14Z> -
32) ?/

= 0. Assume ?/
= Ce"1* is a

solution. The auxiliary becomes, m2 + 14w - 32 = 0. The roots are m 2,

or - 16. The required solution is, therefore, y = C^ + C2e~
x

.

(2) Solve d^y/dx*
- m^y = 0. Ansr. y = C^m* + C.2e~ mx

(see page 319).

(3) Show that y = C^x + C^e
x is a complete solution of

+ 4dyldx + By = 0.

Case 2. When the two roots of the auxiliary are equal. If

m
l
= m

2 ,
in (3), it is no good putting (Cl + C

2)e
m

i
x as the solution,

because C
l + C

2
is really one constant. The solution would

then contain one arbitrary constant less than is required for the

general solution. To find the other particular integral, it is usual

to put

m>2 = ml + h,

where h is some finite quantity which will ultimately be made

zero. With this proviso, we write the solution,

y = Lth = Q
C

1e^'+ C,e<"'i
+

*>*.

Hence, y = Lth = Qe"^(Cl + C
2e**).

Now expand e
hx
by Maclaurin's theorem (page 230).

/. y = Lth^^x
{Cl + C

2(l + hx + ~
= Lth = Q

e
m
^{Cl + 2 + C

2hx(l + ^,

= Lth =^x
(A + Bx + ^C2

h2x* + C
2B),

where R denotes the remaining terms of the expansion of c
/ijr

,

A = C
l + C

2 ,
B = C

2
h. Therefore, at the limit,

y = e"^(A + Bx). . . (4)

For the sake of uniformity, we shall still write the arbitrary inte-

gration constants Cv C
2 ,
C

3 ,
. . .
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For an equation of a still higher degree, the preceding result

may be written,

y = e'^(Gl
+ C& + C.^ + . . . + Cr _ t^f~^. . (5)

where r denotes the number of equal roots.

EXAMPLES. (1) Solve d*yjdx*
-

dPy/dx* - dy/dx + y = 0. Assume

y = Ce >njc
. The auxiliary equation is w1 - w2 - m + 1 = 0. The^-roots are

1, 1, - 1. Hence the general solution can be written down at sight :

y = C
le~*+(C9 + C^)e*.

(2) Solve (D
3 - 3D2 + 4)y = 0. Ansr. e**(Ci + C^x) + Cy? -'.

Case 3. When the auxiliary equation has imaginary roots, all

unequal. Remembering that imaginary roots are always found in

pairs in equations with real coefficients (page 386), let the two

imaginary roots be

m
l
= a + ifi ; and m^ = a -

ifi.

Instead of substituting y = e
nu* in (3), we substitute these values

of m in (3) and get

* + C
2
e
~
&) ;

= e^C^cos fix + i sin fix) + e^C^oos fix
-

L sin fix). (6)

(See the chapter on "Hyperbolic Functions ".) Separate the real

and imaginary parts, as in Ex. 3, p. 280,

y = e**(Cl + C
2 )

cos fix + i(Cl
- C.2 ) sin fix ;

if we put C
l + C

2
= A, i(Cl

- C
2 )
= B,

y = ex(A cos fix + B sin fix)..... (7)

In order that the constants A and B in (7) may be real, the

constants C
l
and <7

2
must include the imaginary parts.

EXAMPLES. (1) Show from (6) that

y = (cosh ax + sinh our) (A l
cos 0x + B

l
sin &x).

(Exercise on Chapter VI.)

(2) Integrate cPyldx* + dy/dx + y = 0. The roots are a = - * and = i >/3 ;

.-. y = e
~

*l*(A cos \ x/3 . x + B sin \/3 . x).

(3) The equation of a point vibrating under the influence of a periodic

force, is,

//- / t

^J + a?x = a cos
2xy.

Find the complementary function. The roots are + 10. From (7)

y = A cos ax + B sin ax.

(3) If (D*
- IP + D -

l)y = 0, y = C
l
cos x + Ca sin x + O*.

Case 4. When some of the imaginary roots of the auxiliary

equation are equal. If a pair of the imaginary roots are repeated,
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we may proceed as in Case 2, since, when m^ = m
2 , C^e

1 '1^ + C./'"^,

is replaced by (A + Bx)e
m

*
x

; similarly, when w3
=w4 ,

C
3
e'"*

r + C
4
e'"*

r

may be replaced by (C + Dx)e
m*x

. If, therefore,

m
l
= m.2 = a + i(3 ;

and w
3
= m

4
= a -

i/?,

the solution

2,
= (CT + C

2x)e(
+ ^* + (C3 + C

4z)e<
a - l^,

becomes y = e^(^ + Zte) cos /fcc + (C + Dx) sin /to. . (8)

EXAMPLES. (!) Solve (H - 12Z)3 + 62D2 - 156D + 169)?/ = 0. Given the

roots of the auxiliary : 3 + 2t, 3 + 2t, 3 -
2i, 3 - 2t. Hence,

T/
= ^{(Cj + Czx) sin 2a; + (C, + C4z) cos 2x}.

(2) If (D
2+ 1) (D - I)

2
?/
= 0, y = (A + Bx) sin x + (C + Dx} cos x + (E + Fx)e*.

Second, ivhen the second member is not zero, that is to say to

find both the complementary function and the particular integral.

The general equation is,

3+4+*-*
;

where P and Q are constant, R is a function of a?. We have just

shown how to find one part of the complete solution of the linear

equation with constant coefficients, namely, by putting E, in (9),

equal to zero. The remaining problem is to find a particular in-

tegral of this equation. The more useful processes will be described

in the next section.

In the symbolic notation, (9) may be written,

f(D)y = R. . . (10)

The particular integral is, therefore,

. (11)

The right-hand side of either of equations (11), will be found to

give a satisfactory value for the particular integral in question.

Since the complementary function contains all the constants

necessary for the complete solution of the differential equation, it

follows that no integration constant must be appended to the par-

ticular integral.

130. How to find Particular Integrals.

It will be found quickest to proceed by rule :

Case 1 (General). When the operator f(D)
~ 1 can be resolved
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into factors. We have seen that the linear differential equation of

the first order,

dyldx
- ay = li

; or, y = R/(D -
a), . . (1)

is solved by
y = e^e

~
'"Rdx..... (2)

The term Cetuc in the solution of (1), belongs to the complementary
function.

Suppose that in a linear equation of a higher order, say,

d*y/dx*
- 5dy/dx -

Gy = R,
the operator f(D)~

l can be factorised. The complementary func-

tion is written down at sight from,

(>
2 - 5D + G)y = ; or, (D -

3) (D -
2)y = 0,

namely, y = C^ + C.
2
e2'..... (3)

The particular integral is

i
~
(D -

3) (D - p
= e**\e-**Rdx

- e^e-**Rdx, .... (4)

from (2). The general solution is the sum of (3) and (4),

.-. = C + Ce2* + e

EXAMPLES. (1) In the preceding illustration, put R = e** and show that

the general solution is, C^e
3* + C.^

2* + %e
ix

.

(2) If (D*
- 4Z> + S)y = 2e**, y = C^* + C#>* + xe3*.

Case 2 (General). When the operator f(D)~
l can be resolved

into partial fractions with constant numerators. The way to

proceed in this case is illustrated in the first example below.

EXAMPLES. (1) Solve d?yldx
2 - 3dy/dx + 2y = e3*. In symbolic notation

this will appear in the form,

(D -
1) (D -

2)y = e**.

The complementary function is y = C
a
e* + C#**. The particular integral is

obtained by putting

according to the method of resolution into partial fractions. Operate with

the first symbolic factor, as above,

2/j
=

e**\e
-

**e**dx -
c*je

- *<?*dx = $&*.

The complete solution is, therefore, y CjC* + C^ + \e**.

(2) Solve (D -
2)*y = x. Ansr.

Case 3 (Special). When R is a rational function of x, say x".

This case is comparatively rare. The procedure is to expand

f(D)
~

l in ascending powers of D as far as the highest power of

a; in R.
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EXAMPLES. (1) Solve d*y[dx
2 - Idyjdx + y = xz

. The complementary
function is y = e^(A + Bx] ;

the particular integral is :

(2
- D)

~W = l + 2 + 32 . (2z
2 + 4* + 3).

(2) If d^y/dx*
- y = 2 + 5x, y = C^ + C^e

~ x + 5x - 2.

Case $ (Special). When B contains an exponential factor, so

that

E = e'
l

*X,

where X may or may not be a function of x and a has some

constant value.

i. When X is a function of x. Since Dn
e
ax = ane"x

,
where n is

any positive integer (page 38), we have (page 25)

D(e'
lx

X) = e
axDX + ae'

lxX = e
nx
(D + a)X,

and generally, as in Leibnitz' theorem (page 49),

De'lxX = e
ax
(D + a)

nX;

The operation \D
~ le

tueX is performed (when X is any function of x)

by transplanting e'
lx from the right- to the left-hand side of the

operator f(D)~
l and replacing D by (D 4- a). This will, perhaps,

be better understood from the following examples :

EXAMPLES. (1) Solve d^y/dx
2 - 2dy/dx + y = xz

e'
lx

. The complete solution

by page 308, is (Cl + xCJe* + (D + 2D + 1)-W*. From (5),

D2 - 2Z) + 1 (D -
1) (D -

1)

By rule : & >x may be transferred from the right to the left side of the operator

provided we replace D by D + 3.

We get

as the value of the particular integral.

(2) Evaluate (D -
1)

lexlogx. Ansr. xexlogxle.

ii. When X is constant. If X is constant, the operation (5)

reduces to

The operation f(D)~
l
e'

lxX is performed by replacing D + a by a.

EXAMPLES. (1) Find the particular integral in (D
2 - 3D + 2)y - e?x .

Obviously,
1 i

D2 - 3D + 2*

* =
32 - 3 . 3 + 2

e *

(2) Show that %e
x

,
is a particular integral in

2dy/dx + 1 = e*.
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An anomalous case arises when a is a root of f(D) = 0. By this

method, we should get for the particular integral of dy/dx - y e.

The difficulty is evaded by using the method (5) instead of (6).

Thus,

The complete solution is, therefore, y = Ce* + xe*.

Another mode of treatment is the following : Since a is a root

of f(D) = 0, by hypothesis, D - a is a factor of /(>) (page 386).

Hence,
f(D) = (D-a)f(D);

= ^ *

f><<* = _ 1
e
a* =

^

(D-a)-f(D) (D-a)'f(a)
If the root a occurs r times in f(D) = 0, then D - a enters r

times into/(D). Therefore,

1
#. _ 1 1 ,,, _ 1 1

r* _ xr*tx

J0f -(D-aYF&f -(D-ar'm rf(a)'

EXAMPLES. Find the particular integrals in, (1) (D + l)~y
= e~*. Ansr.

%x*e~
x

. Hint. Replace D by D - 1. e~ xD--\ etc. See page 312.

(2) (D*
-

l)y = xe*. Ansr. er(^ -
^x). Hint. First get e*(D - l)~

lx t

then e*(l + D + . . .)x, etc.

Case 5 (Special). When R contains sine or cosine factors. By
the successive differentiation of sm(nx + a),

(D'
2
)"sm(nx + a)

=
(
- ri2

)

n

sm(nx + a).*

where n and a are constants.

.-. /(D
2
)sin(na; + a)

= f(
- n2

)sm(nx + x).

(^ + a)
= sin(fr + a). (9)

It can be shown in the same way that,

(nx + a)
=
jp^n

cos(
7^ + a)'

'
(
10)

EXAMPLES. (1) Find the particular integral of

d-ty/dx? + d*yjdx* + dyjdx + y = sin 2x.

Here '

* The proof resembles a well-known result in trignometry, 19 :

D(sin nx) = d(sin nx)/dx = n cos nx ;

Da
(sin nx) = d?(sin nx)/dx* = - n2siu nx, etc.
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Substitute for D2 = (- 22
)
as in (9). We thus get

- %(D + I)~
1sin2a;. Mul-

tiply by D - 1 and again substitute D2 =
(
- 22

)
in the result. Thus

T
i

T (/)
_

i) sin 2x, or TV(2 cos 2x - sin 2x)

is the desired result.

(2) Solve d'ty/dx
2 - k*y = cos mx. Ansr. C^e

kx + C2<?-**- (cos mx)l(m*+ ft
2
).

(3) If o and ft are the roots of the auxiliary equation derived from

d?y/dt
2 + mdyjdt + n*y = a sin nt,

(Helmholtz's equation for the vibrations of a tuning-fork) show that

Cye
at + C#

st - (acosnt)lmn,
is the complete solution.

An anomalous case arises when D'2 in D2 + n2
is equal to - n2

.

For instance, the c6mplementary function of d2
y/dx

2 + n2
y = cos nx,

is C^osnx + C
2smnx, the particular integral is (D'

2 + ri2)cosnx.
If the attempt is made to evaluate this, by substituting D2 = - ri2

,

we get (cos nx)/(
- n2 + ri2

)
== GO cos nx. We were confronted with

a similar difficulty on page 243. The treatment is practically the

same. We take the limit of (D'
2 + n'2)cos nx, when n becomes n + h

and h converges towards zero.

.'.Zrfc

= Lth

= Lth

Lth
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where X is any function of x. The successive differentiation of

two products gives, $ 20,

D"xX = xD"X + nD"-*X.

.-.f(D)xX = xf(D)X + f(D)X.
Substitute Y = f(D)X, where Y is any function of x. Operate
with /(.D)-

1

,
we get

EXAMPLES. (1) Find the particular integral in d*yldx*
- y = .re

2
*. From

(11), the particular integral is

(2) Show in this way, that the particular integral of (/)*
-

l)y = x sin x,

is ^(u*
2cos x - 3x sin

a*).

(3) Solve d?y/dx
z - y = av^sin x.

Ansr. y = C^' + C^ e -
^V*{(10.r + 2)coso.- + (5x

-
14)sin x}.

(4) Integrate dz
y/dx

2 - y = 2cos x.

Ansr. ?/
= C^e* + C&-* + xsinx + ^cos x(l

- x2
).

131. The Linear Equation with Variable Coefficients.

Case 1. The homogeneous linear differential equation. The

general type of this equation is :

where X is a function of
;
a

lt
a

2 ,
. . .

,
an are constants. This

equation can be transformed into one with constant coefficients by
the substitution of

x = e* ;
or z = log x.

we then have,

dx/dz = e
z and therefore, xdy/dx = dyjdz. . (2)

Just as we have found it very convenient to employ the symbol

"
D," to denote the operation

"W' so we shall find it even more

convenient to denote the operation "#-=-," by the symbol ".9".
ax

"9" is treated in exactly the same manner as we have treated
" D " * in 128 and subsequently.

* A little care is required in using this new notation. The operations of differentia-

tion and multiplication by a variable are not commutative. The operation .c
2/)2 is not

the same as $2
,-or as xD . .cD. But we must write,

xDy =,V//:

-
2) . . . (

- n
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EXAMPLES. (1) # = xD = x = d
L-

dx dz

(2) Show that $xm = mx.

i. The complementary function. From the first of equations (2),

we have 12, 9,

dy_dyd^_ldy d*y _ ^(dfy _ dy\ t

dx dz
'

dx
~

x
'

dz
'

dx*
~
x\dx* dz)

'

Substitute these values in (1). The equation reduces to one

with constant coefficients which may be treated by the methods

described in the preceding sections.

EXAMPLES. (1) Solve

3x . dy/dx - 3y = x* + x.

'- (3-
~

.:y = C^e* + C2 cos z \/3 + C3 sin z \fS + $e
2z + \z&.

., y = C^x + C2 cos
( \/3 log x) + C3 sin

('\/3 log x) + \x + \x log x.

(2) Solve x2
. d2

yldx* + x . dy/dx + q*y = ; i.e. ($
2 + q*)y = .

Ansr. y = C
l
sin (q log x) + C2 cos (g log x).

The linear equation with variable coefficients bears the same

relation to x, that the equation with constant coefficients does to

e
mx

. Hence if xm be substituted for y, the factor xm will divide out

from the result and an equation in m will remain. The n roots

of this latter equation will determine the complementary function.

EXAMPLES. (1) Solve y3 . d^y/dx* + 2x . dyjdx - 2y -= 0. Put y = xm .

We get

m(m -
1) + 2(ra

-
1)
=

; or, (m + 2) (m -
1)
= 0.

Hence from our preceding results, we can write down the complementary
function at sight, y C^x + C,zx

~ 2
.

(2) Solve a-
2

. &y\Ax* + x . dy/dx + 2y = 0. Ansr. y = CJx +

(3) Find the complementary function in {($ -
1)

- 3$ +
Ansr. y = (G! + C2 log x)x

2
.

(4) Integrate {$(3-
-

1)
-

1\y = 0. Ansr. y = C
x
x2 + C^x.

ii. The particular integral. We may use the operator #, to

obtain the particular integral of linear equations with variable

coefficients in the same way that D was used to determine the

particular integral of equations with constant coefficients.

The symbolic form of the particular integral is,

R

The operator f(3)
~ 1 may be resolved into partial fractions or into

factors as in the case of D.
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EXAMPLES. (1) Show that y = C^x
4 + C^jx + ^r1

log x is a complete
solution of xa . cPy/dx*

- 2x- . dyjdx - 4y = x4
.

(2) Find the value of a , Q _ 3^- Using the ordinary method just described

1 x3
we get the indeterminate form

g oTT^-
In tnis case we must adopt the

method of page 312 and write

(3) Solve xz
. d*yldx* + 7-r . dyjdx + 5y = x*. Write this

{3(3 -
1) + 73 + 5}y = x*.

The particular integral is
(

2 + 6 + 5)
-

1x5
,
or a.-

5
/60 - The complementary

function is C^x
~ l + C^x

~
f>

.

(4) Solve x*d?y/dx* + 4x . dyjdx + 2y = e?.

Ansr. y = CJx + C2/u-
a + e*jx*.

(5) Solve ar
5

. d^y/dx
5 + 2x-2 . dzyjdx

2 - x . dyjdx + y = x + &.

Ansr. y = CJx + C2x + C3x log x + }j(log x)
2 + x:i

/16.

(6) Solve x3
. &yldx* + 2x2

. d*yldx* + 2y = lOx + W/x.
Ansr. ?/

= CjX cos (log a-) + C.2x sin (log .r) + 5x + C3/j; + (2 log x)[x.

(7) Find the particular integral of the third example in the last set.

Ansr. x3 .

(8) Equate example (2), of the preceding set, to 1/x, instead of to zero,

and show that the particular integral is then (log x)/x.

Case 2. Legendre's Equation. Type :

(a + bx)^ + A
l (a+ bx)

~^^ + . . . + Ay = R, (3)

where A
lt

A.
2 ,

. . ., An are constants, R is any function of x. This

sort of equation is easily transformed into the homogeneous equa-
tion and, therefore, into the linear equation with constant co-

efficients. To make the former transformation, substitute z = a + bx,

for the latter, e = a + bx.

EXAMPLES. (1) Solve

(a + bxy . cPyldx
12 + b(a + bx) . dy/dx + c*y = 0.

Ansr. y = C
1
sin {(c/6) log (a + bx)} + C2 cos |(c/6) log (a + bx)}.

(2) Solve (x + a)*d*yldx*
-

l(x + a) . dy\dx + 6y = x.

Ansr. y = C^x + a)
2 + C^x + a)

3 +

132. The Exact Linear Differential Equation.

A very simple relation exists between the coefficients of an

exact differential equation which may be used to test whether the

equation is exact or not. Take the equation,
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where X
Q ,
Xv . . ., B are functions of x. Let their successive

differential coefficients be indicated by dashes, thus X', X", . . .

Since XQ . ds
y/dx

z has been obtained by the differentiation of

X
Q
2

. d2
y/dx

2
,
this latter is necessarily the first term of the integral

of (1). But,

dx

Subtract the right-hand side of this equation from (1),

Again, the first term of this expression is a derivative of

(Xl
- X' )dy/dx. This, therefore, is the second term of the in-

tegral of (1). Hence, by differentiation and subtraction, as before,

(X,
- X\ + JE

)g + X3y = B. . . (3)

This equation may be deduced by the differentiation of

(X2
- X\ + X6")y, provided the first differential coefficient of

(X9
- X\ + X' ] with respect to x, is equal to X

s ,
that is to say,"

X, - X\ + X'\ = X, ; or, X, - X
2 + X\ - X", = 0. (4)

But if this is really the origin of (3), the original equation (1) has

been reduced to a lower order, namely,

This equation is called the first integral of (1), because the order

of the original equation has been lowered unity, by a process of

integration.

Condition (4) is a test of the exactness ofa differential equation.

If the first integral is an exact equation, we can reduce it, in

the same way, to another first integral of (1). The process of

reduction may be repeated until an inexact equation appears, or

until y itself is obtained. Hence, an exact equation of the nth

order has n independent first integrals.

EXAMPLES. (1) Is the equation
x5

. d*yldx
s + 15z4

. dhj\dx^ + 60^ . dyjdx + GOx^y = ex exact ?

From (4), X~ = GOz2
;
X'z

= 180,r2
; X'\ = ISOo-2

;
A"" = 60.r2 . Therefore,

X, -
X'% + X'\ + X'"Q

= and the equation is exact.

(2) Solve the equation

x&ylda? + (x
2 -

3)d
2
ijldx* + 4ar . Ay\dx + 2y = 0.

as far as possible, by successive reduction. The process can be employed

twice, the residue is a linear equation of the first order, not exact.

(3) Solve the equation given in example (1).

Ansr. x*y ex -f Cx
x2 + Czx + C3 .
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There is another </ttic& practical test for exact differential r<//ni-

tinns (Forsyth) which is not so general as the preceding, \\hen

the terms in X are either in the form of axm
, or of the sum of

expressions of this type, x'"d"y/dx
n

is a perfect differential co-

efficient, if m < n. This coefficient can then be integrated what-

ever be the value of y. If m = n or m > n, the integration cannot

be performed by the method for exact equations. To apply the

test, remove all the terms in which m is less than n, if the re-

mainder is a perfect differential coefficient, the equation is exact

and the integration may be performed.

EXAMPLES. (1) Apply the test to

Xs . d^yjdx
4 + a-

2
. d^y/drf + x . dy/dx + y = 0.

x . dy[dx + y remains. This has evidently been formed by the operation

D(xy), hence the equation is a perfect differential.

(2) Apply the test to

(x*D* + x*D'* + x2D + 2x)y = sin x.

x* . dyjdx + 2xy remains. This is a perfect differential, formed from D(x'
i
y).

The equation is exact.

If two independent first integrals are known the equation is

sometimes easily solved. The elimination of dy/dx between two

first integrals will give the complete solution.

133. The Integration of Equations with Missing Terms.

Differential equations with missing letters are common.

First, the independent variable is absent. Type :

d*y/dtf = qy ; or,
ffiyjda*

=
qf(y). . (I)

This equation is, in general, neither linear nor exact.

Case 1. Whenf(y), in (1), is negative, so that

5+5% = 0, . . (2)

where the academic x and y have given place to t and x respectively,

in order to give the equation the familiar form of the equation of the

motion of a particle under the influence of a central attracting force.

Multiply both sides of the equation by %dx/dt, and integrate

with respect to x,

dx d2x dx

Separate the variables and integrate again,
S?/V*

Sj*

ri-f = qdt- cos
- 1- =

(qt + c),
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where e is the integration constant and C = gV2
. The solution

involves two arbitrary constants a and e, which respectively denote

the amplitude and epoch of a simple harmonic motion, whose

period of oscillation is 2?r/g. Put C
l
= a cos e, and C

2
= - a sin c.

x = Cj cos qt + C
2
sin qt.

Case 2. When f(y) in (1) s positive, the solution assumes the

form,
# = C^e

9*

4- C2
e
~ qt

; or, x = A cosh qt + B sinh g,
as on page 309. All these results are important in connection

with alternating currents and other forms of harmonic motion.

Another way of treating equations of type (2), occurs with an

equation like

V-P, . . . (3)

which has the form of the standard equation for the small oscilla-

tions of a pendulum in air. Under this condition, the resistance

of the air is negligible. Let

p = dy/dx, .-. d'2y/dx
2 = dp/dx = p . dp/dy.

Substitute these results in the given equation, multiply through
with 2/?/.

Multiply by y
2 and

> ,

where C4
is an arbitrary constant. The rest is obvious.

EXAMPLES. (1) The solution of equation (3) is sometimes written in the

form

if = C2
1sinh(2ic + C2).

Verify this.

(2) Solve d2
x/dt

2 + px + v = 0. Put x = x^ + vj/j.
and afterwards omit the

suffix. Ansr. x = vf/u + Cjcos t \//* + C2sin t *fjL

(3) If the term ^x in the preceding example had been of opposite sign,

show that the solution would have been, x =
vj/j. + CjCosh t \//t + C2sinh t \V

where p. is negative.

(4) Solve d^y/dx*
-

a(dy/dx)
2 = 0. Ansr. C^x + C2

= e.
(5) Solve 1 + (dy/dx)

2 = yd
2
yjdx

z
. Ansr. y = cosh(z/a + 6).

(6) Fourier's equation for tlw propagation of heat in a cylindrical bar, is

dzVldx
2 - &V = 0. Hence show that V = C^P* + Ce~^.

Second, the dependent variable is absent. Type :

2 = x; or, d*y/da? =
f(x). . . (4)
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If these equations are exact, they may be solved by successive

integration.

If the equation has the form

d*y/dx* + dy/dx + x = 0.

d*v 1 dv P
Say, j-3 + -

7
= - 7,dr2 r dr Ip'

a familiar equation in hydrodynamics, it is usually solved by sub-

stituting p = dy/dx, .-. dp/dx = d2
y/dx

2
. The resulting equation

is of the first order, integrable in the usual way.

EXAMPLES. (1) The above equation represents the motion of a fluid in a

cylindrical tube of radius r and length I. The motion is supposed to be

parallel to the axis of the tube and the length of the tube very great in

comparison with its radius r. P denotes the difference of the pressure at

the two ends of the tube. If the liquid wets the walls of the tube, the velocity
is a maximum at the axis of the tube and gradually diminishes to zero at the

walls. This means that the velocity is a function of the distance (r^ of the

fluid from the axis of the tube. Solve the equation, remembering that ^ is a

constant depending on the nature of the fluid.

Substitute p = dvjdr,

To evaluate C
l
in (5), note that at the axis of the tube r = 0. This means

that if Cj is a finite or an infinite magnitude the velocity will be infinite.

This is obviously impossible, therefore, Cl
must be zero. To evaluate C2 ,

note

that when r = r
lt

v vanishes and, therefore, we get the final solution of the

given equation in the form, v = ^P(r
z
l
- "2

)/fyi,
which represents the velocity

of the fluid at a distance r
x
from the axis.

(2) Solve ad^y/dx* = \/l + (dyldxf. Make the necessary substitutions and

integrate.

a . dp/ \/(l + p2
)
= dx

;
becomes x/a = log(p + >/p* + 1) + C ;

or, in the exponential form,

by squaring. On integration

(3) Some expressions can be reduced to the standard form by an obvious

transformation. Thus,

d^yjdx
6 - d^jjdx

3 = x.

Substitute p for d'Ayldx* and differentiate p = dPyJdx
3 twice. Thus,

dPpjdx
2 - p = x

t

whence y can be obtained by successive integration as indicated above.

(4) Solve d2
V/dr* + 2dV/n.dr = 0. This equation occurs in the theory of

X
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potential. Put dV/dr for the independent variable and divide through. On

integration

where log Ct
is an arbitrary constant. Integrate again

dV/dr = CJr, becomes V = C2
- CJr.

(5) If x . d^y/dx* = 1, show that y = x log x + C-p + C2 .

134. Equations of Motion, chiefly Oscillatory Motion.

By Newton's second law, if a certain mass (m) of matter is

subject to a constant force (F )
for a certain time, we have, in

rational units,

F
Q
= (Mass) x (Acceleration of the particle).

If the motion of the particle is subject to friction, we must regard
the friction as a force tending to oppose the motion generated by
the impressed force. But friction is proportional to the velocity

(v) of the motion of the particle, and equal to the product of the

velocity and a constant called the coefficient of friction, written,

say, p..
Let F

l
denote the total force acting on the particle in the

direction of its motion,

F
l
= F -

i*.v
= md*s/dt*. ... (1)

If there is no friction, we have, for unit mass,

F = d2
s/dt

2..... (2)

The motion of a pendulum in a medium which offers no resist-

ance to its motion, is that of a material particle under the influence

of a central force (F) attracting with an intensity which is pro-

portional to the distance of the particle away from the centre of

attraction. That is (Fig. 7),

*--*..... (3)

where q- is to be regarded as a positive constant which tends to

restore the particle to a position of equilibrium the so-called co-

efficient of restitution. It is written in the form of a power to

avoid a root sign later on. The negative sign shows that the

attracting force (F) tends to diminish the distance (s) of the par-

ticle away from the centre of attraction. If s = 1, q
2
represents

the magnitude of the attracting force unit distance away. From (2),

d'2s

&--*..... (4)

This is a typical equation of harmonic motion, as will be shown

directly. One solution of (4) is

s = C cos(qt + e). . . . (5)
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This equation is the simple harmonic motion of 50, C denotes

the amplitude of the vibration. If e = 0, we have the simpler

equation,
s = Ccosqt..... (6)

When the particle is at its greatest distance from the central

attracting force, qi
=

TT, 50, page 112. For a complete to and

fro motion, 2t = T = period of oscillation, hence

r.-2x/3. ... (7)

Equation (4) represents the small oscillations of a pendulum ;

also the undamped* oscillations of the magnetic needle of a galvano-

meter.

In the sine galvanometer, the restitutional force tending to restore the

needle to a position of equilibrium, is proportional to the sine of the angle of

deflection of the needle. If J denotes the moment of inertia of the magnetic
needle and G the directive force exerted by the current on the magnet, the

equation of motion of the magnet, when there is no retarding force, is

(8)

For small angles of displacement, </>
and sin

<j>
are approximately equal.

Hence,

3-7*...... <9>

From (4), q = x/G/J, and therefore, from (9),

T = 2,rNOyG, ..... (10)

a well-known relation showing that tlie period of oscillation of a magnet in

the magnetic field, when there is no damping action exerted on the magnet, is

proportional to the square root of the moment of inertia of the magnetic needle,

and inversely proportional to tlie square root of tlie directive force exerted by the

current on Hie magnet. See page 524.

In a similar manner, it can be shown that the period of the small oscilla-

tions of a pendulum suspended freely by a string of length I, is 2ir\/

'//<7,
where

g denotes the acceleration of gravity.

Equation (4) takes no account of the resistance to which a

particle is subjected as it moves through such resisting media as

* When an electric current passes through a galvanometer, the needle is deflected

and begins to oscillate about a new position of equilibrium. In order to make the

needle come to rest quickly, so that the observations may be made quickly, some

resistance is opposed to the free oscillations of the needle either by attaching mica or

aluminum vanes to the needle so as to increase the resistance of the air, or by bringing
a mass of copper close to the oscillating needle. The currents induced in the copper

by the motion of the magnetic needle, react on the moving needle, according to Lenz's

law, so as to retard its motion. Such a galvanometer is said to be damped. When
the damping is sufficiently great to prevent the needle oscillating at all, the galvano-

meter is said to be "dead beat
" and the motion of the needle is aperiodic. In ballistic

galvanometers, there is very much damping.
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air, water, etc. This resistance is proportional to the velocity, and

has a negative value. To allow for this, equation (4) must have

an additional negative term. We thus get

d*s ds

dt*
= ~

^dt
~ qS >

where
/x

is the coefficient of friction. For greater convenience, we

may write this 2/,

Before proceeding further, it will perhaps make things plainer
to put the meaning of this differential equation into words. The

manipulation of the equations so far introduced, involves little more
than an application of common algebraic principles. Dexterity in

solving comes by practice. Of even greater importance than quick

manipulation is the ability to form a clear concept of the physical

process symbolised by the differential equation. Some of the most

important laws of Nature appear in the guise of an "
unassuming

differential equation". The reader should spare no pains to acquire

familiarity with the art. The late Professor Tait has said that
" a mathematical formula, however brief and elegant, is merely a

step towards knowledge, and an all but useless one until we can

thoroughly read its meaning ".

In equation (11), the term d'2s/dt
2 denotes the relative change

of the velocity of the motion of the particle in unit time, 7 ;

%f.ds/dt shows that this motion is opposed by a force which

tends to restore the body to a position of rest, the greater the

velocity of the motion, the greater the retardation
; q'

2s represents

another force tending to bring the moving body to rest, this force

also increases directly as the distance of the body from the position

of rest. To investigate this motion further, we cannot do better

than follow Professor Perry's graphic method.

The first thing is to solve (11) for s. This is done by the method of

130. Put s = emt and solve the auxiliary quadratic equation. We thus

obtain

m = - f x/tf
2 -

S
2
)
...... (12)

And finally,

s = e -
( + 0X ;

or rather, s = C^e
- at + C2e

-
ft,

where a - - / + ^(f -
g
2
)
and - - / - v/(/

2 -
2
2
).

The solution of (11)

thus depends on the relative magnitudes of / and q.

Suppose that we know enough about the moving system to be able to

determine the integration constants. When t = 0, let v = v and s = 0.
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Case i. Tlie roots of (he (in.>-ill<iri/ equation are real and unequal. The

condition for real roots - a and -
)8, in (12), is that / is greater than q

(page 388). In this case,
8 = cy - + c^ -

&, . . . . (is)

solves equation (11). To find what this means, let us suppose that / = 3,

q = 2, t = 0, s = 0, VQ = 0. From (12), therefore,

m = - 3 \/9~^~4 = - 3 2-24 = - -76 and - 5-24.

Substitute these values in (13) and differentiate for the velocity v or ds/dt.

Thus,

s = d - 5>24< + C#
-

; ds/dt =- - 5-24CV
- 5>24< + -76C./

-
.

.-. - 5-24CJ + -75C2 = 1.

From il3), when t = 0, s - and Cl + C2
= 0, or C

v
= + C2

=
,'; ,

.>.s = l(e-"
n<-e-***) (14)

Assign particular values to t, and plot the corresponding values of s by means

of Tables XXI. and XXII. Curve No. 1 (Fig. 114) was obtained by plotting

corresponding values of s and t obtained in this way.

FIG. 114 (after Perry).

Case ii. The roots of the auxiliary equation are real and equal. The
condition for real and equal roots is that / =

q.

.:s = (Cl + C2t)e-f< (15)

As before, let / = 2, q = 2, t = 0, s = 0, ?'
-

1. The roots of the auxiliary
are - 2 and - 2. Hence

s = (C, + Czt)e
- *

;
and dsfdt = C^e

- * -
2(Cj + C2t)e

-
.

.-. C2
- 2C

a
= 1, d = and C2

= 1
;
or s = te

-
*. . . (16)

Plot (16) in the usual manner. Curve 2 (Fig. 114) was so obtained.

Case iii. The roots of the auxiliary equation are real, equal and of opposite

ftitjn. For equal roots of opposite sign, say q, we must have/ = 0. Then

s = Cj sin qt + C2 cos qt (17)

Let t = 0, s = 0, v = 1, q = 2, / = 0. Differentiate (17),

ds/dt = qCl cosqt - qC2 sing/.
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Hence 1 = 2C
a
x 1 - 2 x C2 x 0, or C

a
= \ ;

.-. C2
= 0. Hence the equation,

s = $ sin 2. (18)
A graph from this equation is shown in curve 4 (Fig. 114).

Case iv. The roots of the auxiliary equation are imaginary. For imaginary
roots, - / x/(/2

-
q
2
), or, say a + bt, it is necessary that / < q (page 388).

In this case,
s = e- at

(Ci sin bt + C2 cos bt) (19)

Let the coefficient of friction, / = 1, q = 2, t = 0, s = 0, v - 1. The roots of

the auxiliary are m = - 1 + \/l - 4 = 1 + \/ - 3 = - 1 + l-7i, where

t = \/ - 1. Hence a 1, 6 = 1-7. Differentiate (19),

ds/d = - ae at
(Cl

sin bt + C2 cos &) + be "'(Cj cos bt - C2 sin &).

From (19), C = and, therefore, C
l
= 1/6 = -57. Therefore,

s = -Sle-* sml-lt (20)

Curve 3 (Fig. 114) was plotted from equation (20) in the usual way.

There are several interesting features about the motions re-

presented by these four solutions of (11), shown graphically in

Fig. 114. Curves Nos. 3 and 4 (Cases iv. and iii.) show the

conditions under which the equation of motion (11) is periodic or

vibratory. The effects of increased friction due to the viscosity of

the medium, is shown very markedly by the lessened amplitude
and increased period of curve 3. The net result is a damped
vibration, which dies away at a rate depending on the resistance

of the medium (2/.i;) and on the magnitude of the oscillations

(q^s). Such is the motion of a magnetic or galvanometer needle

affected by the viscosity of the air and the. electromagnetic action

of currents induced in neighbouring masses of metal by virtue of

its motion
;

it also represents the natural oscillations of a

pendulum swinging in a medium whose resistance varies as the

velocity. Curve 4 represents an undamped oscillation, curve 3 a

damped oscillation.

Curves 1 and 2 (Cases i. and ii.) represent the motion when the

retarding forces are so great that the vibration cannot take place.

The needle, when removed from its position of equilibrium, returns

to its position of rest after the elapse of an infinite time. (What
does this statement mean? Compare with page 329.) Kaymond
calls this an aperiodic motion.

To shoiv that the period of oscillation is augmented by damping. From

equation (19) we can show that
s = e

~ atA sin bt (21)

50. The amplitude of this vibration corresponds to that value of t for

which s has a maximum or a minimum value. These values are obtained

in the usual way, by equating the first differential coefficient to zero, hence

e
- at

(b cos bt - a sin bt)
= (22)
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If we now define the angle <j>
such that bt =

<j>,
or

tan
<t>
= bfa......

4>, lying between and (i.e., 90), becomes smaller as a increases in value.

We have just seen that the imaginary roots of - / x'/
1 -

q
2 are - a 61,

for values of / less than q. Let
a* + b- = 2*...... (-J4)

The period of oscillation of an undamped oscillation is, by (7), T = 2w/g,

of a damped oscillation T = 2/6.
.-. T*IT* =-- 2

2
/6

2 =
(rt

2 + 62)/6
2 = 1 + a2

/6
2

.

.-. T/T(}
= ^(a^-~~b*)lb, .... Uo)

which expresses the relation between the periods of oscillation of a damped
and of an undamped oscillation. The period of vibration is thus augmented
on damping.

It is easy to show by plotting that tan <p, of (23), is a periodic function

such that
tan <p

= tan
(< + )

= tan
(<f> + 2ir)

= . . .

Hence
</>, <p + IT, <f>

+ 2?r, . . .

satisfy the above equation. It also follows that

btv bt2 + TT, bt
;

, + -2ir, . . .

also satisfy the equation, where tv ^, ts , ... are the successive values of the

time. Hence
6*2

=
bt^ + TT, 6/3

= MJ + 2ir, . . . ;

... tz
=

t, + $T, ts
=

t, + T, . . .

Substitute these values in (21) and put s
]?

s
2>

S
3> ... for the corresponding

displacements,
.. s

l
= Ae <ui sin bt^ ;

-
.s.2
= Ae "'2 sin btz ;

. . .

where the negative sign indicates that the displacement is on the negative

side. Hence

. . . . (26)

The amplitude thus diminishes in a constant ratio. Plotting these successive

values of s and t, we get s
the curve shown in Fig.

115. This ratio is called

the damping ratio, by Kohl-

rausch
(

4t

Dampfungsver-

haltnis"). _Jt is written ^j |^ \ X^ "V f
k. The natural logarithm (j

of the damping ratio, is

Gauss' logarithmic decre-

ment, written A (the or-

dinary logarithm of k, is

written L). Hence FlG - 115. Damped Oscillation.

A = log k = aT log e = aT =
air/6, . . . (27)

and from (25),

Hence, if the damping is small, the period of oscillation is augmented by a

small quantity of the second order.
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The following table contains six observations of the amplitudes of a

sequence of damped oscillations :

Observed
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factor due to the starting conditions. The current, therefore, tends to assume

the steady condition : C = E/R, when t is very great.

(ii.) When C is an harmonic function of the time, say,

C = C sin ql ; .-. dC/dt = Cnq cos qt.

Substitute these values in the original equation,

E = RCQ sin qt + LC q cos qt,

or. compounding these harmonic motions
( 60),

E = C x'fl8 + Z/V . sin (qt + e),

where tan -
*(Lq/R), the so-called lag* of the current behind the

electro-motive force, the expression *J(R
2 + Lfiq*) is the so-called imped-

ance.

(iii.) Wlien E is a function of Hie time, a&y f(t),

C = Be - M \L +
^e

-
ni'-je

- Rt lL
f(t) . dt,

where B is the constant of integration to be evaluated as described above.

(iv.) WJien E is a simple harmonic function of the time, say,

E = EQ sin qt,

then, C = Be ~ */* + E sin (qt + e)/ v/(fl
2 + L2

g
2
).

The evanescent term e Rt lL may be omitted when the current has settled

down into the steady state. (Why ?)

(v.) WJien E is zero,

C = Be -MIL.

Evaluate the integration constant B by putting C = C ,
when t = 0.

(2) The relation between the charge (q) and the electromotive force (E) of

two plates of a condensor of capacity C connected by a wire of resistance R, is

E = R . dq/dt + q/C,

provided the self-induction is zero. Solve for q. Show that when

E =
f(t), q = l)e-

tlRC
$e-

t iR
cf(t).dt + Be-";R

E = 0, q = Q<p-
tlRC

; (Q is the charge when t = 0).

E = constant, q = CE + Be~ tlRC
;

E = E s'mqt, q = Be~ tlKC + CE(sinqt + RCqcosqt)l(l + R*C*q*).

(3) The equation of motion of a pendulum subject to a resistance which

varies with the velocity and which is acted upon by a force which is a simple
harmonic function of the time, is

Show that the complementary function is

x = A cos(qt + e) + Bsin(qt + ).

* An alternating (periodic) current is not always in phase (or, "in step") with

the impressed (electromotive) force driving the current along the circuit. If there

is > -It'-induction in the circuit, the current lags behind the electromotive force ;
if

there is a condensor in the circuit, the current in the condensor is greatest when the

electromotive force is changing most rapidly from a positive to a negative value, that

is to say, the maximum current is in advance of the electromotive force, there is then

said to be a lead in the phase of the current.
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To solve the equation, assume that

x = A cos(qt + e) + B sin(g + e),

is a solution. Substitute in the given equation,

.-. - A<- + 2fBq + n*A = !;.-.- Aq* + 2fBq + n*B = 0.

4 = n* ~
g
2

B = _ 2/g

(
H2 _

g '2)
+ 4^2

'

(
W2 _

g2) + 4y2g
2-

Put 4 = E cos 6. B = R sin e.

The solution of the given equation is then

x = Rcoa(qt + e -
ej), .... (32)

where R = I/ ^{(n
2 -

g
2
)'

2
+ 4/

2
g'
2
} ;

tan 6 = 2/#/(>t
2 -

g'
2
).

The forced oscillations due to the impressed periodic force, are thus de-

termined by (32). The complementary function gives the natural vibrations

superposed upon these.

(4) If the friction in the preceding example, is zero,

**
+ n*x = cosfe* + e

) (33)

A particular integral is x = {f.cos(qt + e)}j(n
2 -

q
2
).

This fails when n = q. In

this case, assume that x = Ctsin(nt + e)
is a particular integral. (33) is

satisfied provided C = fj2n. The physical meaning of this is that when the

pendulum is acted on by a periodic force " in step
" with the oscillations of

the pendulum, the amplitude of the forced oscillations will increase pro-

portionally with the time, until, when the amplitude exceeds a certain limit,

equation (33) no longer represents the motion of the pendulum.

(5) When an electric current, passing through an electrolytic cell, has

assumed the steady state, show that the ionic velocity is proportional to the

impressed force (electromotive force). By Newton's law, for a moving body,

(Impressed force) = (Mass) x (Acceleration).

Friction is to be regarded as a retarding force acting in an opposite direction

to the impressed force
;
this frictional force is proportional to the velocity of

the body.
.-. (Impressed force less friction) = (Mass) x (Acceleration).

Express these facts in symbolic language. See (1) above. Integrate the

result and evaluate the constant for v = 0, when t 0.

For ionic motion, m is very small, p. is very great. When t is great, show

that the exponential term vanishes, and

Ohm's law. Compare with (31).

135. The Velocity of Simultaneous and Dependent
Chemical Reactions.

While investigating the rate of decomposition of phosphine

( 88), we had occasion to point out that the action really takes

place in two stages :

STAGE I. PH3
= P + 3H.

STAGE II. 4P = P
4 ;
2T = H

2
.
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The former change alone determines the velocity of the whole

reaction. The physical meaning of this is that the speed of the

reaction which occurs during stage II., is immeasurably faster

than the speed of the first. Experiment quite fails to reveal the

complex nature of the complete reaction.*

Suppose, for example, a substance A forms an intermediate

compound B, and this, in turn, forms a final product C. If the

speed of the reaction

A = B, is one gram per , o<jW second,

when the speed of the reaction

B = 6T

,
is one gram per hour,

the observed " order
"

of the complete reaction

A = (7,

will be fixed by that of the slower reaction, B =
6', because the

methods used for measuring the rates of chemical reactions are not

sensitive to changes so rapid as the assumed rate of transformation

of A into B. Whatever the " order
"

of this latter reaction, B = C
is alone accessible to measurement. If, therefore, A = C is of the

first, second, or nth order, we must understand that one of the

subsidiary reactions (A = B, or B = C) is

(1) an immeasurably fast reaction, accompanied by

(2) a slower measurable change of the first, second or nth

order, according to the particular system under investigation.

If, however, the velocities of the two reactions are of the same

order of magnitude, the "order" of the complete reaction will not

fall under any simple type ( 88, 89), and, therefore, some changes
will have to be made in the differential equations representing the

course of the reaction. Let us study some of the simpler cases.

Case i. In a given system, a substance A forms an intermediate

substance B, which finally forms a third substance C.

Let one gram molecule of the substance A be taken. At the end of a cer-

tain time t, the system contains x of A, y of B, z of C. The rate of diminution

of x is evidently

--M...... '"

* Professor Walker illustrates this by the following analogy (" Velocity of Graded

Reactions," Proc. Royal Soc. Edin., Dec., 1897): "The time occupied in the trans-

mission of a telegraphic message depends both on the rate of transmission along the

conducting wire and on the rate of the messenger who delivers the telegram ;
but it is

obviously this last, slower rate that is of really practical importance in determining the

total time of transmission ". . . .
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where k denotes the velocity constant of the transformation of A to B. The
rate of formation of C is

where k.2 is the velocity constant of the transformation of B to C. Again,
the rate at which B accumulates in the system is evidently the difference in

the rate of diminution of x and the rate of increase of z, or

^k.x-kM...... (3)

The speed of the chemical reactions,

A = B = C,

is fully determined by this set of differential equations. When the relations

between a set of variables involves a set of equations of this nature, the result

is said to be a system of simultaneous differential equations.

In a great number of physical problems, the interrelations of the variables

are represented in the form of a system of such equations. The simplest class

occurs when each of the dependent variables is a function of the independent
variable.

The simultaneous equations are said to be solved when each variable is

expressed in terms of the independent variable, or else when a number of

equations between the different variables can be obtained free from differential

coefficients.

To solve the present set of differential equations, first differentiate (2),

Add and subtract k^y, substitute for dy/dt from (3) and for k
2y from (2), we

thus obtain

But from the conditions of the experiment,
x + y + z = 1, .-. z - I = -

(x + y).

Hence, the last equation may be written,

0. '. . (4)

This linear equation of the second order with constant coefficients, is to be

solved for z - 1 in the usual manner
( 130). At sight, therefore,

a - \ = Ctf-** + C#-**..... (5)

But 2 = 0, when t = 0,

.'. C, + C2
= - 1...... (6)

Differentiate (5). From (2), dz/dt = 0, when t 0. Therefore, making the

necessary substitutions,
- Cfa - C2k.2

= ...... (7)

From (6) and (7),

C, = kjfa -
fc,) ; C2

= kjfa -
kj. 1

The final result may therefore be written,

fcg-e-aat +
fe

* g-*i*. ... (8)
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Harcourt and Esson have studied the rate of reduction of potassium per-

manganate by oxalic acid.

2KMnO4 + 3MnSO4 + 2H2O = K^SO4 + 2HtSO4 + 5MnO9 ;

MnO., + HtSO4 + #2C2O4
= MnSO4 + 2#2O + 2CO2 .

By a suitable arrangement of the experimental conditions this reaction

may be used to test equations (5) or (8).

Let x, y, z, respectively denote the amounts of MnzO7 , MnO^ and Mm)
(in combination) in the system. The above workers found that C, = 28'5 ;

C2
= 2-7 ; c-*i = -82 ;

e-*2 = -98. The following table places the above sup-

positions beyond doubt.
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In some of Harcourt and Esson's experiments, C1
= 4-68 ;

fe
1
= -69

;
kz
= -006364.

From the first of equations (9), it is easy to show that x = ae-h*. Where
does a come from ? What does it mean ? Hence verify the third column in

the following table :
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which will be immediately recognised as another way of writing the familiar

equation

So far as practical work is concerned, it is necessary that the solutions of

the differential equations shall not be so complex as to preclude the possibility

of experimental verification.

Case iii. In a given system A combines with R to form B, B
combines with E to form C, and C combines with E to form D.

In the hydrolysis of triacetin,

CjHg . A 3 + H. OH = 3A . H + C3H6(OH)3 ,

(Triacetin) (Glycerol)

where A has been written for CH3 . COO . , there is every reason to believe

that the reaction takes place in three stages :

CSH6 .A3 + H.OH=A.H + C3H6 .A^.OH (diacetin) ;

C3H5 . Z2 . OH + H . OH = A . H + C3H5 . ~A . (0#)2 (monacetin) ;

C3#5 . A . (OH)* + H . OH = A . H + C3HK . (OH)3 (glycerol).

These reactions are interdependent. The rate of formation of glycerol is con-

ditioned by the rate of formation of monacetin ;
the rate of monacetin depends,

in turn, upon the rate of formation of diacetin. There are, therefore, three

simultaneous reactions of the second order taking place in the system.
Let a denote the initial concentration (gram molecules per unit volume)

of triacetin, b the concentration of the water
;
let x, y, z, denote the number

of molecules of mono-, di- and triacetin hydrolysed at the end of t minutes.

The system then contains a - z molecules of triacetin, z -
y, of diacetin,

y -
x, of monacetin, and b -

(x+ y + z) molecules of water. The rate of

hydrolysis is therefore completely determined by the equations :

dx/dt = k^y -
x) (b

- x - y -
z) ; . . . (13)

dyldt = k^(z
-

y} (b
- x - y -

z) ; . . . (14)

dzfdt = k3(a
-

z) (b
- x - y -

z) ; . . . (15)

where fc
lt

fc2 ,
fc
3 , represent the velocity coefficients ($ 88) of the respective

reactions.

Geitel tested the assumption : k
t
= 7c2

= k3 . Hence dividing (15) by (13)

and by (14), he obtained

dz/dy =(a- z)l(z
-

y} ; dzfdx = (a
-

z)l(y
-

x). . . (16)

From the first of these equations,

dy + yJL. = ^,
a - z a - z

which can be integrated as a linear equation of the first degree. The constant

is equated by noting that if a = 1, z = 0, y = 0. The reader might do this as

an exercise on 123. The answer is

y = z + (a
-

z)\og(a
-

z)..... (17)

Now substitute (17) in the second of equations (16), rearrange terms and inte-

grate as a further exercise on linear equations of the first order. The final

result is,

x = z + (a
-

z)\og(a
-

z)
-

?LZ_f{log(a
-

z)}*. . . (18)
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Geitel then assigned arbitrary numerical values to z (say from O'l to TO),
calculated the corresponding amounts of x and y from (17) and (18) and com-

pared the results with his experimental numbers. For experimental and
other details the original memoir must be consulted (vide infra).

EXAMPLE. Calculate equations analogous to (17) and (18) on the supposi-
tion that

fcj 4= k2 4= ks .

A study of the differential equations representing the mutual conversion

of red into yellow, and yellow into red phosphorus, will be found in a paper

by Lemoine in the Annales de Chimie et de Physique [4], 27, 289, 1872.

There is also a series of interesting papers by Rud. Wegscheider bearing
on this subject in Zeit. f. phys. Glum., 30, 593, 1899 ; ib., 34, 290, 1900 ; ib., 35,

513, 1900; Monatsliefte filr Chemie, 22, 749, 1901.

The preceding discussion is based upon papers by Harcourt and Esson,
Phil. Trans., 156, 193, 1866; Geitel, Journ. filr prakt. Chem. [2], 55, 429,

1897; J. Walker, Proc. Roy. Soc. Edin., 22, 1897. It is somewhat surprising

that Harcourt and Esson's investigation has not received more attention from

the point of view of simultaneous and dependent reactions. The indispens-

able differential equations, simple as they are, might perhaps account for this.

But chemists, in reality, have more to do with this type of reaction than any
other. The day is surely past when the study of a particular reaction is

abandoned simply because it
" won't go

"
according to the stereotyped velocity

equations of 88.

136. Simultaneous Differential Equations.

By way of practice it will be convenient to study a few more

examples of simultaneous equations.

For a complete determination of each variable there must be

the same number of equations as there are independent variables.

Quite an analogous thing occurs with the simultaneous equations

of ordinary algebra.

I. Simultaneous equations with constant coefficients. The

methods used for the solution of these equations are analogous

to those employed for similar equations in algebra. The opera-

tions here involved are chiefly processes of elimination and sub-

stitution, supplemented by differentiation or integration at various

stages of the computation. The use of the symbol D often shortens

the work. Most of the following examples are from results proved
in the regular textbooks on physics.

EXAMPLES. (1) Solve dxjdt + ay = 0, dyjdt + bx = 0. Differentiate the

first, multiply the second by a. Subtract and y disappears. Hence writing

ab ra2
,

x = C^nt + C#~ mt
; or, y = C2 v/6/a . e

~ mt -
Cj *Jbfa . e"lt

.
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We might have obtained an equation in //, and substituted it in the second.

Thus four constants appear in the result. But one pair of these constants

can be expressed in terms of the other two. Two of the constants, there-

fore, are not arbitrary and independent, while the integration constant is

arbitrary and independent. It is always best to avoid an unnecessary

multiplication of constants by deducing the other variables from the first

without integration. The number of arbitrary constants is always equal

to the sum of the highest orders of the set of differential equations under

consideration.

(2) Solve dxjdt + y = 3* ; dyldt
- y = x. Differentiate the first. Sub-

tract each of the given equations from the result. (D
2 - 4D + 4)z remains.

Solve as usual, x = (Cl + C^e*. Substitute this value of x in the second

of the given equations and y = (Cl
- Cz + C^e*.

(3) The equations of rotation of a particle in a rigid plane, are

dxjdt = py ; dyjdt = /JLX.

To solve these, differentiate the first, multiply the second by /u, etc. Finally

x = Cl
cos

ij.t + Cz sin p.t ; y = C\ cos /*t + C'2 sin fit. To find the relation

between these constants, substitute these values in the first equation and
-

fj.Cl sin ^t + /j.C<z cos pt = pC\ cos fit + /j.C'% sin pi,

or C\ = - C'2 and C2
= C\.

(4) Solve tfxIdP = - n*x d*yldt
z = -

n*y.

x = Cl
cos nt + C2 sin nt ; y = C'2 cos nt + C'z sin nt.

Eliminate / so that

(C\x - C$Y + (C'ax
- C27/)

2 - (CjC'2
- C^)2

,
etc.

The result represents the motion of a particle in an elliptic path, subject to a

central gravitational force.

(5) Solve dxjdt + by + cz =
; dyjdt + a^x + c^z + ; dzldt + azx+ bzy=0.

Operate on the first with Z>2 - 62cl5
on the second with 62c

- bD, on the third

with bc^
- cD. Add. The terms in y and z disappear. The remaining

equation has the integral,

x = C^ + C#Bt + C#*\
where o, , 7, are the roots of

& -
(a^b + 2c + b^cjz + a^b^c + a^bc^ = 0.

The values of y and z are easily obtained from that of x by proper substi-

tutions in the other equations.

(6) If two adjacent circuits have currents ^ and i,, then, according to the

theory of electromagnetic induction,

(see J. J. Thomson's Elements of Electricity and Magnetism, p. 382), where

-Rj, R2,
denote the resistances of the two circuits, Lly L%, the coefficients of

self-induction, Elt
Ez ,

the electromotive forces of the respective circuits and
M the coefficient of mutual induction. All the coefficients are supposed
constant.

First, solve these equations on the assumption that E
l
= Ez

= 0. Assume
that

ii
= ae and ij

= be*,

Y
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satisfy the given equations. Differentiate each of these variables with respect
to t and substitute in the original equation

aMm + b(Lzm + R2)
=

;
bMm + ft(L a

w + #,) = 0.

Multiply these equations so that

(L^ - M2)w
2 + (L^z + R^m + R^2

= 0.

For physical reasons, the induction L^LZ must always be greater than M.
The roots of this quadratic must, therefore, be negative and real (page 388),

and

i
x
= a^e

~
'"i f

,
or a2e

-
'"2*

;
i2
= \e

-
'"i, or b#

-
'"2*.

Hence, from the preceding equation,

a-^Mm-^ + b
l
L2ml + B^ -

;
or a^ = (L^m^ + R

z)IMml ;

similarly, 2/^2 Min2[(L l
m2 + -^i)-

Combining the particular solutions for ^ and i2 ,
we get

ij
=

a-^e
- mi f + a2e

~
'"a*

;
i2
= \e

- mi* + b2e
- m

tf,

the required solutions.

Second, if E-^ and E2 have some constant value,

are the required solutions.

II. Simultaneous equations with variable coefficients. The

general type of simultaneous equations of the first order, is

P,dx + QJy + R,dz =
;

P
2dx + Q.2dy + R2

dz = 0, . .

where the coefficients are functions of x, y, z. These equations

vcan often be expressed in the form

dx _ dy _ dz

~P
~

Q
~

~R'
'

which is to be looked upon as a typical set of simultaneous equa-

tions of the first order. If one of these equations involves only

two differentials, the equation is to be solved in the usual way,
and the result used to deduce values for the other variables, as in

the first of the subjoined examples.

When the members of a set of equations are symmetrical, the

solution can often be simplified by taking advantage of a well-

known theorem * in algebra (ratio). According to this,

*
Perhaps it is best to state the proof. Let

da-IP = dy/Q = dz\R = &, say ; then,

dx = Pk
; dy = Qk ;

dz = Rk ;

or, Idx = IPh mdy = mQk ; ndz = nRk.

Add these results,

Idx + mdy + ndz = k(lP + mQ + nR).
Idx + mdy + ndz , _ dx dy _ dz

'

TP + mQ + nR~
= =

~P
=

~Q
=

~R'
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dx dy dz Idx + mdy + ndz _ I'dx + m'dy + n'dz

~P
=

~Q
=
~R

=
IP + mQ + nR

'' "

IP + m'Q + n'H
== " (

3)

where I, m, n, I', m', ri, . . . are sets of multipliers such that

IP + mQ + nR =
; IT + m'Q + n'R =

; . . . (4)

hence, Idx + mdy + ndz = 0, etc. . . . (5)

The same relations between x, y, z, that satisfy (5), satisfy (2).

If (4) be an exact differential equation, equal to say du, direct

integration gives the integral of the given system, viz.,

u = a, (6)

where a denotes the constant of integration.

In the same way, if

Idx + mdy + ndz = 0,

is an exact differential equation, equal to say dr, then, since dv is

also equal to zero,

r-6. . . . . (7)

is a second solution. These two solutions must be independent.

EXAMPLES. (1) Solve dx[y = dy/x =
dz\z. The relation between dx and

dy contains x and y only, the integral, t/
2 - x2 = C

lt
follows at once. Use

this result to eliminate x from the relation between dy and dz. The result is

dz\z = dyJJ(y*
- CJ ; or, y + x%2 + C\) = C^z.

These two equations, involving two constants of integration, constitute a

complete solution.

(2) Solve dx/(mx -
ny) = dyf(nx

-
Iz) dz/(ly

-
mx). I, m, n and or, y, z

form a set of multipliers satisfying the above condition. Hence,
Idx + mdy + ndz =

;
xdx + ydy + zdz 0.

The integrals of these equations are

u = Ix + my + nz C1 ; r = x'2 + y
2 + z2 = C2 ,

which constitute a complete solution.

(3) Solve dx/(x
2 -

y
2 -

z*)
= dyfixy = dzftxz. From the two last equa-

tions y = Cz. Substituting x, y, z for I, m, n, each of the given ratios is

equal to

(xdx + ydy + zdz)\(& + y* + z2
). .-. x2 + 7/

2 + z* = C^z,

is another solution.

137. Partial Differential Equations.

Equations obtained by the differentiation of functions of three

or more variables are of two kinds :

1. Those in which there is only one independent variable,

such as

Pdx + Qdy + Rdz = Sdt,

which involves four variables three dependent and one inde-

pendent. These are called total differential equations.



\

340 HIGHER MATHEMATICS. 137.

2. Those in which there is only one dependent and two or

more independent variables, such as,

where z is the dependent variable, x, y, t the independent variables.

These equations are classed under the name partial differential

equations.
The former class of equations are rare, the latter very common.

We shall confine our attention to partial differential equations.

In the study of ordinary differential equations, we have always
assumed that the given equation has been obtained by the elimina-

tion of constants from the original equation. In solving, we have

sought to find this primitive equation.* Partial differential equa-

tions, however, may be obtained by the elimination of arbitrary

functions of the variables as well as of constants.

It can be shown from Euler's theorem (page 56) that if

xnf(y
z

\

\x x y
be a homogeneous function,

where the arbitrary function has disappeared.f Again, if

u = f(ax
3 + by

3
),

is an arbitrary function of x and y.

7)U ^)U ^U ^U
= af(ax

3 + by
3
) ;

= bf(ax
3 + by

3
) ;

.-. b - a = 0.

*
Physically, the differential equation represents the relation between the de-

pendent and the independent variables corresponding tp an infinitely small change in

each of the independent variables.

The reader will, perhaps, have noticed that the term "
independent variable "

is

an equivocal phrase. (1) If u =f(z), u is & quantity whose magnitude changes when

the value of z changes. The two magnitudes u and z are mutually dependent. For

convenience, we fix our attention on the effect which a variation in the value of z has

upon the magnitude of u. If need be we can reverse this and write z =f(u), so that

u now becomes the ''independent variable". (2) If v = f(x, y), x and y are "inde-

pendent variables
"

in that x and y are mutually independent of each other. Any
variation in the magnitude of the one has no effect on the magnitude of the other, x

and y are also "independent variables
"
with respect to v in the same sense that z has

just been supposed the "independent variable" with respect to u.

f This is usually proved in the textbooks in the following manner :

Let u = xnf(yjx, z[x, . . .
).

Put yfx = Y, z/x = Z, . . .

.-. 3r/3z = -
0/o-a, -dZfdx = -

z/x* . . . ; ^Y/^y = l/x, -dZfdy = 0, . . .

Let v =f(Y, Z, . . .
), for the sake of brevity, therefore, since u x",
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EXAMPLES. (1) If y - bu = f(x
-

an), aJ^ +
6^-

= 1.

(2) If I/*
-

Ifx = f(lfy
-

I/a:), y*d*fcx + y*dz[dy = #.

(8) If z = a(r + y) + 6, 'dzfdx
-

'dzfty = 0.

For this reason an arbitrary function of the variables is added

to the result of the integration of a partial differential equation
instead of the constant hitherto employed for ordinary differential

equations.

If the number of arbitrary constants to be eliminated is equal
to the number of independent variables, the resulting differential

equation is of the first order. The higher orders occur when the

number of constants to be eliminated, exceeds that of the inde-

pendent variables.

If u =
f(x, y), there will be two differential coefficients of the

first order, namely, 'bu/'tix and ~%ufiy ; three of the second order,

namely, 'b-ufix*, Wufixby, Wufiy'
2

. . .

138. What is the Solution of a Partial Differential

Equation ?

Ordinary differential equations have two classes of solutions

the complete integral and the singular solution. Particular

solutions are only varieties of the complete integral. Three

classes of solutions can be obtained from some partial differential

equations, still regarding the particular solution as a special case

of the complete integral. These are indicated in the following

example.
The equation of a sphere in three dimensions is,

aj + y* + *s = r-, . . (1)

when the centre of the sphere coincides with the origin of the

by the method for the differentiation of a function of a function, 6 and 9,

Therefore,

^ ^ ^ Y & ^ '&>'dz .'do.

3t/
=
^BT'^ =x"

dY'Vz= xn
dZ

;

te
=

'

32'
Now multiply by x, y, z, . . . respectively, and add,
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coordinate planes and r denotes the radius of the sphere. If the

centre of the sphere lies somewhere on the xy-pl&ne at a point

(a, b), the above equation becomes

(
X -

a)
2 + (y

-
b)^ + z* = r2

. . . (2)

When a and b are arbitrary constants, each or both of which may
have any assigned magnitude, equation (2) may represent two

infinite systems of spheres of radius r. The centre of any mem-
ber of either of these two infinite systems (called a double infinite

system) must lie somewhere on the xy-pl&ne.

Differentiate (2) with respect to x and y.

x _ a + z
^z

; = o
; y - b + * = 0. (3)to ty

Substitute for x - a and y
- b in (2). We obtain

^2

|/^\
2

/^y+1 |
= r2

\\toy v*y/ /

Equation (2), therefore, is the complete integral of (4). By
assigning any particular numerical value to a or b, a particular
solution of (4) will be obtained, such is

(x
-

I)
2 + (y

-
79)

2 + z* = r2
. . . (5)

If (2) be differentiated with respect to a and b,

(/ \2 / Z*\2 I "2 9) . (/ \2 / 7A2 2 2)

^a
'

^>b

or, # - a = 0, and y
- b = 0.

Eliminate a and 6 from (2),

* =
r, (6)

This result satisfies equation (4), but, unlike the particular solution,

is not included in the complete integral (2). Such a solution of

the differential equation is said to be a singular solution.

Geometrically, the singular solution represents two plane sur-

faces touched by all the spheres represented by equation (2). The

singular solution is thus the envelope of all the spheres represented

by the complete integral. If AB (Fig. 79) represents a cross sec-

tion of the #?/-plane containing spheres of radius a, CD and EF
are cross sections of the plane surfaces represented by the singular

solution.

If the one constant is some function of the other, say,

a =
b,

(2) may be written

(x
- ay + (y

-
a)

2 + z* = r2 . . . (7)
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Differentiate with respect to a. We find

a =
(x + y).

Eliminate a from (7). The resulting equation

is called a general integral of the equation.

Geometrically, the general integral is the equation to the

tubular envelope of a family of spheres of radius r and whose

centres are along the line x =
y. This line corresponds with the

axis of the tube envelope. The general integral satisfies (4) and

is also contained in the complete integral.

Instead of taking a b as the particular form of the function

connecting a and b, we could have taken any other relation, say
a = \b. The envelope of the general integral would then be like

a tube surrounding all the spheres of radius r whose centres were

along the line x =
^y. Had we put a1 - b- = 1, the envelope

would have been a tube whose axis was an hyperbola x'
2 -

y- = 1.

A particular solution is one particular surface selected from the

double infinite series represented by the complete solution. A

general integral is the envelope of one particular family of surfaces

selected from those comprised in the complete integral. A singular

solution is the complete envelope of every surface included in the

complete integral.*

Theoretically an equation is not supposed to be solved com-

pletely until the complete integral, the general integral and the

singular solution have been indicated. In the ideal case, the

complete integral is first determined ;
the singular solution ob-

tained by the elimination of arbitrary constants as indicated above ;

the general integral then determined by eliminating a and f(a).

Practically, the complete integral is not always the direct ob-

ject of attack. It is usually sufficient to deduce a number of

particular solutions to satisfy the conditions of the problem and

afterwards to so combine these solutions that the result will not

only satisfy the given conditions but also the differential equation.

* The study of Gibbs' "Surfaces of Dissipated Energy,"
"

,s'///yi/vx <</' />

tion,"
" Su/faces of Cliemical tiqui/i/irit'iu," as well as van der Waals' Surfaces," is

the natural sequence of 68, 126 and the present section. But to enlarge upon this

subject would now cause a greater digression than is here convenient. Airy's little

book, An I-lli:iiii'ntui-ii Treatise on Partial Differential Equation*, will repay careful

study in connection with the geometrical interpretation of the solutions of partial

differential equations.
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Of course, the complete integral of a differential equation

applies to any physical process represented by the differential

equation. This solution, however, may be so general as to be of

little practical use. To represent any particular process, certain

limitations called limiting conditions have to be introduced.

These exclude certain forms of the general solution as impossible.

See examples at the end of Chapter VIII. ; also example (1) last

set 133, and elsewhere.

The more important varieties of partial differential equations

from the point of view of this work are the linear equations of the

second and higher orders.

139. The Solution of Partial Differential Equations of the

First Order.

For the ingenious general methods of Lagrange, Charpit, etc.,

the reader will have to consult the special textbooks, say, For-

syth's A Treatise on Differential Equations (Macmillan & Co.,

1888).

There are some special types classified by Forsyth in the

following order :

Type I. The variables do not appear directly. The general

form is,

fQzfix, tz/ty) = 0. . . . (I.)

The solution is

z = ax + by 4- C,

provided a and b satisfy the relation

f(a, b)
= 0, or b = f(a).

The complete integral is, therefore,

z = ax + yf(a) + C. (I)

EXAMPLES. (1) Solve (9*/3a;)
2 + (ds/dy)* = m2

. The solution is

z ax + by + C',

provided a2 + 62 = m2
. The solution is, therefore, z = ax + y v/(m

2 - a2
) + C.

For the general integral, put C= f(a). Eliminate a between the two equations,
'

z = ax + ^/(w
2 -

a?)y + f(a) ;
and x -

a/ N/(w
2 -

a?)y + f(a) = 0,

in the usual way.

(2) Solve pq 1. Ansr. z ~ ax + y/a + /(a).

NOTE. We shall sometimes write, for the sake of brevity,

'dzj'dx
= p ; 'ds/'dy

=
3.

(3) Solve a(p + q) = z. Sometimes, as here, when the variables do ap-

pear in the equation, the function of x, which occurs in the equation, may
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be associated with 'dzfdx, or a function of y with 'dzfdy, by a change in the

variables. We may write the given equation ap\z + aqfz = 1. Put dz\n = d'A ;

dy/a = dr, dx/a = dX, hence, 9#/3 Y + 'dZftX = 1, the form required.

(4) Solve x*p* + 2/V = *- Pu t X = log x, y = logy, Z = log z. Proceed

AS before. Ansr. 2 = Cxa
y V(i-

2
).

If it is not possible to remove the dependent variable z in this

way, the equation will possibly belong to the following class :

Type II. The independent variables x and y are absent. The

general form is,

Assume as a trial solution, that

?>zfiy
= a .

Let t)z/D# be some function of z obtained from II., say p =
<j>(z).

Substitute these values in

dz = p . dx + q . dy.

We thus get an ordinary differential equation which can be readily

integrated.
dz =

<f>(z)
. dx + a<f>(z) . dy.

.'. x + ay =
\dz/<f>(z) + C. . . . (2)

EXAMPLES. (1) Solve pzz + g
2 = 4 Here,

(a
2 + z) (dzldxY = 4. >J(a? + z) . dzjdx = 2,

.-. x + C = /^(a
2 + z) . dz = $(a

2 + z)
3
/
2

. Ansr. 2(a
2 + zf = 3(x + ay + C)

2
.

(2) Solve p(l + q
2
)
= q(z

-
a). Ansr. 4C(s -

a) = (x + Cy + 6)
2

.

If z does not appear directly in the equation, we may be able

to refer the equation to the next type.

Type III. z does not appear directly in the equation, but x and

dzfix can be separated from y and ^z/^y. The leading type is

/1(4te/te)-/&,>/*f). . - (HI.)

Assume as a trial solution, that each member is equal to an

arbitrary constant a, so that ^zj^x and *bz/ty can be obtained in

the form,

Ttzftx
= ^(x, a) ; *bzfiy

=
<f>2(y, a).

dz = p . dx + q . dy,
then assumes the form

dz^fl(x,a)dx+/2(y,a)dy. . . (3)

EXAMPLES. Solve the following equations :

(1) q
- p = x -

y. Put 'dz/'dx
- x = 'dzf'dy

- y = a. Write

'dzl'dx
= x + a, etc. ; 'dz/'dy

= y + a.

Hence, z = $(x + a)
2 + $(y + a)

2 + C.

(2) g
2 + ^2 = x + y. Ansr. z = \(x + a)*P + ;{(,/

- a)** + C.

(3) q = 2?#>
2

. Ansr. z = ax + a-//
2 + <-'
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Type IY. Analogous to Clairaut's equation. The general

type is

z = p . x + q . y + f(p . q). . (IV.)
The complete integral is

z = ax + by + f(a, b). . . . (4)

EXAMPLES. Solve the following equations :

(1) z = px + qy + pq. Ansr. z= ax + by + ab. Singular solution 2= -xy.

(2) z = px + qy + k J(l + p* + g
2
).

Ansr. z = ax + by + k \/l + a2 + 62.

Singular solution, x2 + y* + z2 = r2 . The singular solution is, therefore, a

sphere ; r, of course, is a constant.

(3) z = px + qy - n *Jpq. Ansr. z = ax + by - n sjab. Singular solution,

140. Partial Differential Equations of the nth Order.

These are the most important equations that occur in physical
mathematics. There are no general methods for their solution,

and it is only possible to perform the integration in special cases.

The greatest advances in this direction have been made with the

linear equation. Before proceeding to this important equation, it

appears convenient to solve some simpler types.

EXAMPLES. Integrate the following equations :

(1) o
-p,

= a.
If^pr =P', ^

= Integrate with regard to y and we

get p = ay + f'(x). It is very possible that/'() is a function of y. Integrate
with respect to x and z = {{ay + f'(x)}dx = axy + f^x) + f2(y).

9% x
(
2

) 3^-
~
y
= a. Ansr. z = Jx

2
log y + axy + f^x) + f2(y).

HcM = %) Ansr.* = S[e-

There are many points of analogy between the partial and the

ordinary linear differential equations. Indeed, it may almost be

said that every ordinary differential equation between two variables

is analogous to a partial differential in the same class. The solu-

tion is in each case similar, but with these differences :

First, the arbitrary constant of integration in the solution of

an ordinary differential equation is replaced by a function of a

variable or variables.

Second, the exponential form, Ce"1

*, of the solution of the

ordinary linear differential equation assumes the form e
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The expression, e 6y
<t>(y), is known as the symbolic form of Taylor's

theorem. Having had considerable practice in the use of the symbol of

operation D for
^-,

we may now use D' to represent the operation =s-

By Taylor's theorem,

where .< is regarded as constant.

The term in brackets is clearly an exponential series (page 230) equivalent to

mjc- 3
e y

, or, writing D' f r
^T

<t>(y + >n.v)
= e'llxD'ty(ij}. .... (1)

The general form of the linear equation is,

where A^, A lf
. . ., A, may be constants, or functions of x and y.

As with ordinary linear equations,

Complete Solution = Particular Integral + Complementary Function.

The complementary function is obtained by solving the left-

hand side of equation (2), equated to zero. We may write (2) in

symbolic form,

(AJP + A^DU + A.
2
D f '

2 + A
3
D + Ajy + A.^z

= 0, . (3)

where D is written for ^- ;
D' ion: ^- ;

DD' for s~^~- Sometimes

we understand

^D,D>-0. . . (4)

in place of (2).

141. Linear Partial Equations with Constant Coefficients.

A. Homogeneous equations. Type :

. d'2Z
.

~ti'
2Z .

cl~2

where R is a function of x.

To find the complementary function, put R = 0, and instead

of assuming, as a trial solution, that y = e
mc

,
as was the case with

the ordinary equation, suppose that

z =
<l>(y + 1) (

6 )
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is a trial solution. Differentiate (6), with respect to x and y, we
thus obtain,

*

^Z Wz
*) ;

=
f'(y + mx) ;

= mf"(y + m*) ;

w = mf (y

Substitute these values in equation (5) equated to zero, and divide

out the factor f"(y + mx). The auxiliary equation,
A m2 + A^m + A

2
= 0. . . . (7)

remains. If w is a root of this equation, f"(y + mx) = 0, is a

part of the complementary function. If a and ft are the roots of

(7), then

z = ^^(y) + *^2(y), ... (8)

as in (3), 130. From (6), therefore,

=
A(?/ + oo?) + /2(y + #u) . . . (9)

since a and ft are the roots of the auxiliary equation (7), we can
write (5) in the form,

(D + aD') (D + ftD')z
= 0. . . . (10)

EXAMPLES. Solve the following equations :

(1) %&
~ ^2

= - Ansr- z = MV + ^ + MV - x
)-

(2) fjj
- 4^ + 4^2

- 0. Ansr. ^ . My -
2aj) + /2(y -

2*).

~ 2 = - Ansr - * =

(4) ^2"=
2

^2-
Ansr. M = Mat + x) + fz(at -

x). This most important

equation, sometimes called d'Alembert's equation, represents the motion of

vibrating strings, the law for small oscillations of air in narrow tubes (organ

pipes), etc.

We cannot say much about the undetermined functions f-^at + x) and

fz(at -
x) in the absence of data pertaining to some specific problem. Con-

sider a vibrating harp string, where no force is applied after the string has

once been put in motion. Let x I denote the length of the string under a

tension equal to the weight of a length L of the same kind of string. In

order to avoid a root sign later on, a2 has been written in place of gL, where

g represents the constant of gravitation. Further, let u represent the dis-

placement of any part of the string we please, and let the ordinate of one end

of the string be zero. Then, whatever value we assign to the time t, the

limiting conditions are u 0, when x =
;
and u = 0, when x = L

.-. f^at) + M^) =
; M^ + I) + fz(at -

I)
= 0,

are solutions of d'Alembert's equation. From the former, it follows that

fi(at) must always be equal to - /2() ;

Q -Mat- Z)=0.
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r.ut <if may have any value we please. In order to fix our ideas, suppose that

nt - I -= y t
.: tit + I = q + 21, where q has any value whatever.

The physical meaning of this solution is that when q is increased or diminished

by 21, the value of the function remains unaltered. Hence, when at is in-

creased by 21, or, what is the same thing, when t is increased by 21fa, the

corresponding portions of the string will have the same displacement. In

other words, the string performs at least one complete vibration in the time

2//o. Hence, we conclude that d'Alembert's equation represents a finite

periodic motion, with a period of oscillation 2l/a.

EXAMPLE. Show that

HMat + l) + Mat -
1)}

= 0,

is a solution of d'Alembert's equation, and interpret the result.

A further study of d'Alembert's equation would require the introduction

of Fourier's series, Chapter VIII.

When two of the roots are equal, say a =
ft. We know that the

solution of

(D - afz = 0, is z = e^C^x + C
2), 130 ;

by analogy, the solution of

(D - aDJz = 0, is z = 6">/iM + My)},

or, z = xj\(y + ax) + fz(y + ax). . . (11)

EXAMPLES. Solve :

(1)
-

(2) (D
3 - 3IW + D-D'2 + D3

)*
= 0.

Ansr. z = xf^y -
x} + fz(y -

x) + f3(y + x).

The particular integral will be discussed after.

B. Non-homogeneous equations. Type :

.

A A^ +^ +^ + ^ = 0. (12)

If the non-homogeneous equation can be separated into factors,

the integral is the sum of the integrals corresponding to each sym-
bolic factor, so that each factor of the form D - mD', appears in

the solution as a function of y + mx, and every factor of the form

D - mD' -
a, appears in the solution in the form z = e^ffy + mx).

Factors, (D + D') (D - D' + l)z = 0. Ansr. z = My -
x) + e

~
*My + x).

Factors, (D + 1) (D -
D')z = 0. Ansr. e = e~ ^(y) + MX -

y).
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It is, however, not often possible to represent the solutions of

these equations in this manner. When this is so, it is customary
to take the trial solution,

z = e** + fiy
t

. . . . (13)

and substitute for z in the given equation (12). Then,
T>z T>z Wz= az . =

ftz ;
_- =

aftz ;

Equate the resulting auxiliary equation to zero. We thus obtain

(A^ + A iaft + A.2(3'
2 + A.

3
a + A

4ft + A
6)z

= 0. (14)

This may be looked upon as containing a bracketed quadratic in

a and (3. For any value of
ft,
we can find the corresponding value of

a, or the value of a, for any assigned value of
ft.

There is thus an

infinite number of particular solutions of this differential equation.

If u1}
u

2 ,
u
3,

. . .
,
are particular solutions of any partial dif-

ferential equation, each solution can be multiplied by an arbitrary

constant and the resulting products are also solutions of the equation.

Similarly2
it is not difficult to see that the sum of any number

of particular solutions will also be a solution of the given equation.

It is usually not very difficult to find particular solutions, even

when the general solution cannot be obtained. The chief difficulty

lies in the combining of the particular solutions in such a way,
that the conditions of the problem under investigation are satisfied.

Plenty of illustrations will be found at the end of the next chapter.

If the above quadratic is solved for a in terms of
ft, and if the

resulting /(a, ft),
is homogeneous, we shall have the roots in the

form,

a = Wj/3, a = m
2ft,

. . .
,
a = mJ3.

The equation will, therefore, be satisfied by any expression of the

form,
z = 2C* +

>

f
.... (15)

where m has any value m
1}
m

2 ,
. . . and C may have any value

C
lf
C

2 ,
. . . The symbol

" S
"

indicates the sum of the infinite

series, obtained by giving m and C all possible values.

The above solution (15), may be put in a simpler form when ft

is a linear function of a, say, ft
= aa + b. This applies to equation

(12). Again, we can sometimes solve the equation z = eax + ^y = 0,

for a, in terms of ft. In order to fix these ideas, let us proceed to

the following examples.
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EXAMPLKS. (1) Solve (D
2 -D>=0. Herea3 -/3=0. Hence, * = CV

Put a = , a = 1, a = 2, . . . and we get the particular solutions

Now the difference between any two terms of the form eax + ^y, is included in

the above solution, it follows, therefore, that the first differential coefficient

of e
ax + fty

t
is also an integral, and, in the same way, the second, third and

higher derivatives must be integrals. Thus we have the following particular

solutions :

y =^x +2ay) + Qy(x + 2at/)}, etc.

If a = 0, we get the special case,

z = <V + C2 (.r
2 + 2y) + C3(a-> + 6xy) + . . .

(a
-

/3) (a + jS
-

3)
= 0. .'. /3

= a and = 3 - a.

Hence z = *{* + > + ^2Ca
e
a<-r

~
-
7/)

; z = f,(y + x) + e^f2(y -
x).

(3) S 1Ve ^y + a
^c

+ b
!j,

+ abz = ' Ansr ' z = e
~

Vf̂ + e
'

bXf̂ (y} -

(4) Solve (D
2 - Z)'2 + D + 3D' - 2)z= 0. Ansr. z = ej^y -x) + e~ ^f2(y + x).

142. The Particular Integral of Linear Partial Equations.

The following methods for finding the particular integral of

homogeneous or non-homogeneous equations, are deduced by

processes analogous to those employed for the particular integrals

of the ordinary equations.

The complementary function of the ordinary linear equation

(D - m)z = 0, is, Cemx
;

so, for the partial equation

(D - mD')z = 0, we have, e'"*
D
'<t>(y),

or the equivalent <f>(y + mx).
This analogy extends to the particular integrals. In the former

case, the particular integral of

(D - m)z = R, is, z = (D - m)~
lE

;

while for F(D, D')z = E, we have, z = F(D, D')~
1B.

Case 1 (General). When F(D, D') can be resolved into factors,

so that,

z = (D -
mD')f(x, y). . (16)

It is now necessary to find a value for this symbol (16).

First show that

DenxE = (D + a)R,
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by putting mD in place of a, and f(x, y), in place of E (Case 4 r

131)-

-T/fr *-). . . (17)

The value sought. The particular integral may, therefore, be

found by the following series of operations :

(1) Subtract mx from y in the f(x, y), to be operated upon.

(2) Integrate the result with respect to dx. (3) Add mx to y,

after the integration.

If there is a succession of factors, the rule is to be applied to

each one seriatim, beginning on the right.

EXAMPLES. Find particular integrals in the following examples. It is

well to be careful about the signs of the different terms added and subtracted.

It is particularly easy to err by want of attention to this.

Now xy becomes x(y
-

ax). This, on integration with respect to dx, becomes

%x*y
- %ax

z
,
and finally typy + \av? -

\ax*. Hence,
1 1 _ 1 x*y axs

D - aD'
'

D + aD'
' D - aD'

"

~2~
+

IT'

Subtract - ax from y, for %x"*(y + ax) + ^ax
3

. Integrate and add - ax to the

result. \a?y remains. This is the required result.

(2) (D
2 + 3DD' + 2Z>')

~ lx + y. Ansr. \x*y
-

\x*.

Case 2 (Special). When E has the form f(ax + by). Multiply

F(D, D> by Dn and get

Dn
<f>(D'/D)z

= f(ax + by).

Operate on ax + by with D' and D respectively,

jjf(ax
+ by)

= -.

As on page 313, the particular integral is
"

1 1

How to use this formula will appear from the examples.

EXAMPLES. Find particular integrals in, (1) (D* + DD' - 2D'2
)z

The particular integral is

sin(x + 2u) =- ffsinte +
1 + 2 - 8JJ

(2) (D
2 + 5DD' + QD'z

)z
= lj(y

-
2x). Ansr. xlog(y -
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The above process cannot be employed when F(D, D'), or

F(a, b) has the same form as R, because a vanishing factor then

appears in the result. In such a case, use the above method for

all factors which do not vanish when a is put for D, b for D. The

solution is then completed by means of the formula :

EXAMPLE. Evaluate the particular integral in

(D -
D') (D + 2D')z = x + y.

For the first factor, use the above method and then

Case 3 (Special). When E has the form of sin(ax + by), or

cos(ax + by). Proceed as on page 313, when

+ fy)
= _ -^hXoz + fy), (19)

F(D*> DD', D'2
) F(

-
a*,

- ab, - 62
)

and in the same way for the cosine.

EXAMPLES. Find the particular integrals in :

(1) (D
2 + DD' + IT -

l)z = sin (x + 2y).

sin * + =
' sinD* + DD' + D' - I

= - 1 - 2 + D' -

D' + 4 1=
D'2 - 16

= "
10>

cos
(
x + %) + 2 sin

(
x + 2

2/)l-

(2) (D + DD' -
2D')z = sin (x

-
y) 4- sin (x + ij).

Find the particular

integral for sin (x
-

?/),
then for sin (x + y). Add the two results together.

Ansr. sin (x
-

y) + $x cos (a + y).

For the anomalous case proceed as in 131.

Case 4 (Special). When E has the form e
ax + b

*, proceed as

directed on page 312,

that is to say, put a for D and b for D'.

EXAMPLES. Find particular integrals in the following :

(1) (D* - DD' - 2D'2 + 2D + 2D> = e2* + 3
.

Ansr. = (D
2 - DD' - 2Z)'2 + 2D + 2Z>')

- le** + 3*
;
=

(2) (DD' + aD + bD' + ab)z = em + *. Ansr. em +
**l(m + a) (n + b).

If F(a, b)
= 0, proceed as on page 313,
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where F'a or F'b denotes the first differential coefficient with respect
to the subscript. The two results agree with each other.

EXAMPLE. Solve (Z>
2 - D'2 - 3D + 3D'}z = e*+**.

Ansr. fax + y) + es*f2(y
-

x)
-

ye*
+ 2

*.

Case 5 (Special). When B has the form xr
y*, where r and s are

positive integers. Operate with -^(.D, D')
~ l on xr

y
s

expanded in

ascending powers of r and s.

EXAMPLES. (1) Find the particular integral in :

(D
2 + DD' + D -

\)z = x*y.

= -
x*y -2y-2X -x*-.

The expansion is not usually carried higher than the highest power of the

highest power in f(x, y).

(2) Evaluate (D
2 - D'2 - 3D + 3D')

~ l
xy. Ansr.

(3) (D
2 -

a*D'*)z = x.

1 / D'2

Case 6 (Special). When R has the form e
ax + byX, where X is a

function of x or y. Use

F(D, D')
~ le

ax + ^X = e
ax + byF(D + a, D + b)~

1X, (22)

derived as on page 315.

EXAMPLE. Find the particular integrals in

xeax +

x =- D'

143. The Linear Partial Equation with Variable

Coefficients.

These may sometimes be solved by transforming them into a

form with constants. E.g.,

~ti

r + sz

(i.) Any term xr
y

s

^x^ . may be reduced to the form with con-

stant coefficients, by substituting u = log x, v = log y.

EXAMPLES. Solve the equations :

(i)
- y -y + *

= a This reduces to ^2^u2 ~ ^/3t;2=0-
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e tin- solution of this equation, z = ^(u + v) + $2(u
-

v), must be re-

ted into the form in x and y, thus, z = f^xy)

+ 2xy &y + 7/
e

= ' Ansr' * = fl(ylx) + xf*(ylx} '

+ y)J|/- a
|r

= a Put 3* = ".a*-

Ansr. z = /,(y) + J(a? + y)
a
f'2(x) . do-.

(ii.) The transformation may be effected by substituting
d

,9 =
a^-

and $' = y^,
and treating the result as for constant co-

efficients.

EXAMPLES. (1) Solve the first two examples of the preceding set in this

way.

nz = 0.

144. The Integration of Differential Equations in Series.

When a function can be developed in a series of converging

terms, arranged in powers of the independent variable, an ap-

proximate value for the dependent variable can easily be obtained.

The degree of approximation attained obviously depends on the

number of terms of the series included in the calculation. The

older mathematicians considered this an underhand way of getting

at the solution but, for practical work, it is invaluable. As a

matter of fact, solutions of the more advanced problems in physical

mathematics are nearly always represented in the form of an ab-

breviated infinite series. Finite solutions are the exception rather

than the rule.

EXAMPLES. (1) Evaluate the integral in f(x) = 0. Assume that/(jr) can

be developed in a converging series of ascending powers of a% that is to say,

f(x) = a + a^x + OyK
2 + ayX

3 + ...... (1)

By integration

jf(x)dx
=

f(o + a^x + atfc'* + . . ,)dx ;

=jaQdx + ja^xdx + Jo^dz + ,
. . ;

. .
.) + C. . . . cJi

(2) It is required to find the solution of dyfdx = y, in series. Assume
that

//
=

/(a-), has the form (1) above, and substitute in the given equation.

(i -
o) + (2aa -al)x + (3a3 -ajx+ . . . =0. . . (3)
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This equation would be satisfied, if

a - a ' a - 1
a --^a a - l - 1

2 2 3
2

3 !

Hence, y = aQ<f>(x),

where
<j>(x}

= 1 + x + x* + x3 + . . . = ex.

2 ! 3 !

Put a for the arbitrary function,

.-. y = aex .

That this is a complete solution, is proved by substitution in the original

equation.

Write the original equation in the form

where v is to be determined. Hence,

since
<j>(rc)

satisfies the original equation,

dy/dx = 0, or v is constant.

For equations of higher degree, we must proceed a little differently. For

example :

(3) Solve g - x^ -
cy = x>

(4)

(i.)
The complementary function. As a trial solution, put y = ax. The

auxiliary equation is

m(m -
I)a a'

w - 2 - (m + c)x
m = 0. . . . (5)

This shows that the difference between the successive exponents of x in

the assumed series, is - 2. The required series is, therefore,

y = aQx
m + a-fl?

- 2 + . . . + an _ ^x
m + * - 2 + anxm + *,

which is more conveniently written

In order to completely determine this series, we must know three things
about it. Namely, the first term, the coefficients of x and the different powers
of x that make up the series.

Substitute (6) in (4),

h2-a _
(
m + 2n + c)anx

m + 2n = 0, (7)~o x

where n has all values from zero to infinity. If x is a solution of (4), the

coefficient of xm + 2n ~ 2 must vanish with respect to m. Hence by equating
the coefficient of xm + Zn ~* to zero,*

(m + Zn) (m + Zn -
l)an

- (m + 2n - 2 + c)an _ l
= 0. . (8)

If n = 0, m = 0, or m = 1.

When n is greater than zero,

m + Zn - 2 + c m\

(m + 2n) (m + 2n -
1)"

This formula allows us to calculate the relation between the successive

coefficients of x by giving n all integral values 1, 2, 3, ...

* If we take the other part of the auxiliary a diverging series is obtained, useless

for our purpose.
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['irst, suppose m = 0, then we can easily calculate from |'J).

c + 2 c(c + 2)
'"* =

-37r
a

'
= "- :

Next put m = 1, and, to prevent confusion, write 6, in (9), in place of .

b _ c + 2u - 1."
2n(2n + 1)

*~ 1 '

proceed exactly as before to find successively 6
lt

62 , & . . .

"hi ''"' ^

The complete solution of the equation, is the sum of series (10) and (11),

or if Ufa = y', fa/2
= y",

y = ay\ + fa/a.

which contains the two arbitrary constants a and 6.

(ii.) The particular integral. By the above procedure we obtain the com-

plementary function. For the particular integral, we must follow a somewhat
similar method. E.g., equate (8) to #2 instead of to zero. The coefficient of

m -
2, in (5), becomes

m(m -
l)aQx"*

~ 2 = a;
2

;

.-. m - 2 = 2 and m(m -
I)a = 1

;

Substitute successive values of n = 1, 2, 3, . . . in the assumed expansion,
and we obtain

(Particular integral) = a^x + o1x'
r' + 2 + a,^c

m + 4 + . . .
,

where
,
av 0%, . . . and m have been determined.

(4) Solve dtyldx
2 + xy = 0.

Ansr. y = a( 1 x3 +
'

x6 - . . j + b( x - x* +
'

x~ -
. .]\3! 6! /\4! 7! /

The so-called Riccati's equation,

= j. hy% = cxn
ax

has attracted a lot of attention in the past. Otherwise it is of no particular

interest here. It is easily reduced to a linear form of the second order. Its

solution appears as a converging series, finite under certain conditions.

Forsyth (I.e.) or Johnson (I.e.) must be consulted for fuller details, A de-

tailed study of the more important series employed in physical mathematics

follows naturally from this point. These are mentioned in the next section

along with the titles of special textbooks devoted to their use.

145. Harmonic Analysis.

One of the most important equations in physical mathematics, is

It has practically the same form for problems on the conduction of heat, the

motion of fluids, the diffusion of salts, the vibrations of elastic solids and
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flexible strings, the theory of potential, electric currents and numberless

other phenomena, x, y, z are the coordinates of a point in space, t denotes

the time and V may denote temperature, concentration of a solution, electric

and magnetic potential, the Newtonian potential due to an attracting mass,

etc., K is a constant. If the second member is zero, we have Laplace's equation,

if the second number is equated to irp, where p is a function of x, y, z, the

result is known as Poisson's equation.

32F 3F 32F
+ ~ =

'
is Laplace s e(*uatioIL

32F 32F 32F
*5-g + 7j~T

+
3^2

=
4*v>, is Poisson's equation.

The first member is written v2Fby some writers, A2Fby others. The equa-

tion is often more convenient to use in polar coordinates, viz.,

-v 92F i 32F 2 3F cote BF i
=
3^2+ -j*' ^p

+ r'W +
~^~'30

+
r2^2?

'

where the substitutions are indicated in (11), 48.*

Any homogeneous algebraic function of x, y, z, which satisfies equation

(1), is said to be a solid spherical harmonic. These functions are chiefly used

for finding the potential on the surface of a sphere, due to forces which are

not circularly symmetrical, f

Particular solutions of (1) give rise, under special conditions, to the so-

called surface spherical harmonics, tesseral harmonics and toroidal harmonics.

The series

,_
2nr(n + 1) 22(n + 1) 24 . 2 \(n f 1) (n + 2)

is called a Cylindrical Harmonic or a BesseVs function of the nth order. The

symbol Jn(x) is used for it. The series is a particular solution of Bessel's

equation.

d*y I dy+ -+
If n = 0, the series is symbolised by J (x) and called a BesseVs function of the

zeroth wder. These functions are employed in physical mathematics when

dealing with certain problems connected with equation (1). Another particular
solution is

called a Bessel's function of the second kind (of the zeroth order), symbolised
bv jffo(x)-

Similarly, the solution of Legendre's equation

(1
- x^y - 2x-^ + m(m + 1) = 0,

ax ax
is the series

i
m

(
m + 1)^2 a.

m
(
m ~ 2

) (
m + 1

) (
m + 3

) 4

~2T~ ~TT~

* This transformation is described .in the regular textbooks. But possibly the

reader can do it for himself.

t A point is said to be circularly symmetrical, when its value is not affected by
rotating it through an angle about the axis.
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written, for brevity, Pm(x). This furnishes the so-called Surface Zonal Har-

monics, Legendre's coefficients, or Legendrians. Another particular solution,

x - <
m ~ !Mm + 2

)
:r
s + (

m -!)("*- 3) (m + 2) (m + 4)^
3 ! 5 !

written Qm(x), gives rise to Surface Zonal Harmonics of the second kind.

Both series are extensively employed in physical problems connected with

equation (1).

The equation

(x*
- 62

) (x*
- c2

) + x(x>
- 62 + z2 - c2

)
- {m(m + 1) (a;

2 - 62+ c*)p\y= 0,

called Lame's equation, has "series" solution which furnishes LamPs func-
tions or Ellipsoidal Harmonics, used in special problems connected with the

ubiquitous equation

.

K at

The so-called hypergeometric or Gauss' series,

ab a(a + 1)6(6 + 1)
1 + 1U' +

2lc(c + l)
'*+-

appears as a solution of certain differential equations of the second order, say,

x(l
-
x)j

+ {
C -(a + b +

l)x}^
- aby = 0,

(Gauss' equation) ,
where a, b, c, are constants.

The application of these series to particular problems constitutes that

branch of mathematics known as Harmonic Analysis.

But we are getting beyond the scope of this work
;
for more practical

details, the reader will have to take up some special work such as Byerly's

Fourier's Series and Splierical Harmonics. Weber and Riernann's Die Par-

tiellen Differential- Gleichungen der Mathematistfien Physik is the textbook

for more advanced work. Gray and Mathews have A Treatise on Bessel's

Functions and tlieir Application to Physics (Macmillan & Co., 1895).
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CHAPTER VIII.

FOURIER'S THEOREM.

" Fourier's theorem is not only one of the most beautiful results of

modern analysis, but may be said to furnish an indispensable

instrument in the treatment of nearly every recondite question

in modern physics. To mention only sonorous vibrations, the

propagation of electric signals along a telegraph wire, and the

conduction of heat by the earth's crust, as subjects in their

generality intractable without it, is to give but a feeble idea of

its importance." THOMSON AND TAIT.

146. Fourier's Series.

JUST as a musical note can be resolved into a fundamental note

and its overtones, so every periodic vibration can be resolved into

a series of secondary vibrations represented, in mathematical sym-

bols, by a series of terms arranged, not in a series of ascending

powers of the independent variable, as in Maclaurin's theorem,

but in a series of sines and cosines of multiples of this variable.

Such expansions in a series of trignometrical terms, are of great

importance in physical problems involving potential, conduction

of heat, light, sound, electricity and other forms of propagation.
The series, developed by means of Fourier's theorem, is called

Fourier's series.

Any physical property (density, pressure, velocity, etc.) which

varies periodically with time and whose magnitude or intensity

can be measured, may be represented by a Fourier's series. This

means, as we shall soon see, that every vibration can be resolved

into a series of harmonic vibrations.

Fourier's theorem determines the law for the expansion of any
arbitrary function in terms of sines or cosines of multiples of the

independent variable (x).
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If f(x) is a periodic function with respect to time, space, tem-

perature, potential, etc., Fourier's theorem states that

f(x)
= A Q + fljsin x + a.,sin 2# + . . . + ^cos a; -f 62

cos 2# + . . .
, (1)

which is known as Fourier's series. A trignometrical function,

like Fourier's series, for example, passes through all its changes
and returns to the same value when x is increased by 2?r. See also

d'Alembert's equation, page 348.

Assuming this theory to be valid between the limits x = + TT

and x = -
TT, we shall now proceed to find values for the co-

efficients, A ,
av a

2 , . . .
, 6j, 6

2 , . . .
,
which will make the series

true.

In view of the fact that the terms of Fourier's series are all

periodic we may say that Fourier's series is an artificial way of

representing the propagation or progression of any physical quality

by a series of waves or vibrations.

147. Evaluation of the Constants in Fourier's Theorem.

First, to find a value for the constant A . Multiply equation (1)

by dx and then integrate each term between the limits x = + IT and

x = - TT. Every term involving sine or cosine terms vanishes, and

. dx
; or, A, =

+

\f(x) . dx, . (2)
J

+

'/(x)

remains. Therefore, when f(x) is known, this integral can be

integrated.*

Second, to find a value for the coefficients of the cosine terms,

say bn ,
where n may be any number from 1 to n. Equation (1)

must not only be multiplied by dx, but also by some factor such

that all the other terms will vanish when the series is integrated

between the limits + TT, b,,cosnx remains. Such a factor is

coa nx . dx. In this case,

J+T
cos'2nx . dx = bnir,

-7T

(page 184), all the other terms involving sines or cosines, when

integrated between the limits + TT, will be found to vanish. Hence
the desired value of bn is

+

*f(x) .cosnx. dx. . . (3)

*
I have omitted details because the reader should find no difficulty in working

out the results for himself. It is no more than an exercise on preceding work.
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This formula enables any coefficient, bv b
2 ,

. . .
,
bn to be obtained.

If we put n = 0, the coefficient of the first term A assumes the

form,

^o = J&o..... W
If this value is substituted in (1), we can dispense with (2), and

write

f(x)
= |6 + fl^sin x + frjcos x + a.

2
sin 2x + 6

2
cos 2x + . . . (5)'

Finally, to find a value for the coefficients of the sine terms, say
an . As before, multiply through with siunxdx and integrate be-

tween the limits + IT. We thus obtain

i c+ n

f(x).m
7TJ-TT

sin nx . dx. . . (6)

There are several graphic methods for evaluating the coefficients of a

Fourier's series. See Perry, Electrician, Feb. 5, 1892
; Woodhouse, the same

journal, April 19, 1901 ; or, best of all, Henrici, Phil. Mag. [5], 38, 110, 1894,

when the series is used to express the electromotive force of an alternating

current as a periodic function of the time.

148. The Development of a Function in a Trignometrical
Series.

1. The development of a trignometrical series of sines. Suppose
it is required to find the value of

f(x)
= x,

in terms of Fourier's theorem. From (2), (3) and (6),

1 f
+ v

1 f
+ "" 2

bH = - x . cos nx . dx =
;
an
= - x . sin nx . dx = -

Tj-Tr -n-J-n n

according as n is odd or even ;

Hence Fourier's series assumes the form

x = 2(sin#
-

| sin2# + Jsin3# -
. . . ), . (7)

which is known as a sine series ; the cosine terms have disappeared

during the integration.

By plotting the bracketed terms in (7), we obtain the series

of curves shown in Fig. 116. Curve 1 has been obtained by

plotting y = sin a;
;
curve 2, by plotting y = | sin Zx ; curve 3, from

y =
J sin Sx. These curves, dotted in the diagram, represent the

o vertones or harmonics. Curve 4 has been obtained by drawing
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ordinates equal to the algebraic sum of the ordinates of the pre-

ceding curves.

, FIG. 116. Harmonics of the Sine Curve.

As a general rule, any odd function of x will develop into a series

of sines only, an even function of x will consist of a series of cosines.

The general form of the sine development is

f(x)
= a^inx + a

2
sin2# + 3sin 3x + . . ., . (8)

where a has the value given in equation (6).

FIG. 117. Harmonics of the Cosine Curve.

2. The development of a trignometrical series of cosines. As an

example, let

be expanded by Fourier's theorem. Here

&= -
_ 4.

x2
. cos nx . Ax = + ,
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according as n is odd or even. Also,

Hence,

148.

icos2# - icos3# + . . .Y (9)

By plotting the first three terms enclosed in brackets on the right

side of (9), we obtain the series of curves shown in Fig. 117 (p. 363).

The general development of a cosine series is as follows :

f(x)
= %b

- b^osx + 6
2
cos2# + . . ., . (10)

where b has the values assigned in (3).

EXAMPLES. (1) Develop unity in a series of sines between the limits

x = ir and x = 0. Here M = i.

an = -F.fAnnxdx = (1
-

cosn-n-) = All - (- 1)}_1 or
i

iro

according as n is odd or even. Hence, from (8),

1 = -(x + $ sin 3x ...). . . . (11)

The first four terms of this series are plotted in Fig. 118 in the usual way.

FIG. 118. Harmonics of the Sine Development of Unity.

(2) Show that for x =
81 "

(3) Show that

x sin x = 1 - 4 cos x -
I cos 2x + cos 3# - ^ cos 4z + . . .

between the limits v and 0.

If* = *then _ + , A + A _...

(12)

(13)
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(4) Show x = - (cos x + % cos 3# + ^6 cos 5x + .

Hint. 6 = - I

'

J (

bn = - I x cos nx . da? = ---(cos nir -
1) =

*J o nV n%

(14)

(5) Show that if c is constant,

c = -(sin x + \
tr

Plot the curve as indicated above.

(15)

3. Comparison of the sine and the cosine series. The sine and

cosine series are both periodic functions of x, with a period of 2?r.

The above expansions hold good only between the limits x = + TT,

that is to say, when x is greater than -
IT, and less than + IT.

When x =
0, the series is necessarily zero, whatever be the value

of the function.

Now any function can be represented both as a sine and as a

cosine series. Although the functions and the two series will be

identical for all

values of x between

x = TT and x 0,

there is a marked

difference between

the sine and cosine

developments of the

same function. For

instance, compare
FlG ' H9. Diagrammatic Curve of the Cosine Series.

the graph of x when developed in series of sines and series of

cosines between the limits x = and x =
TT, as shown in (7) and

(14) above. Plot

these equations for

successive values

of x between + TT,

etc. In the case of

the cosine curve

we get the lines

shown in Fig. 119.

By tracing the

curves correspond-
FlG- 120- Diagrammatic Curve of the Sine Series.

ing to still greater values of TT, we get the dotted lines shown in the

same figure. For the sine curve we get the lines shown in Fig. 120.
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Note the isolated points ( 63) for x = + TT, y =
; x = 3 TT,

y-O; . . .

Both these curves coincide with y = x from x = to x =
TT,

but not when x is less than -
TT, and greater than + TT.

149. Extension of Fourier's Series.

Fourier's series may be extended so as to include all values

of x between any limits whatever.

(i.)
When the limits are x = + c, x = - c. Let

<f>(x)
be any

function in which x is taken between the limits - c and + c.

Put x =
CZ/TT, or z = TTX/C. Hence,

+(x)
=

4>(czlir)
=

f(z), say. . . (16)

When x changes from - c to + c, z changes from - TT to + TT, and,

therefore, for all values of x between - c and + c, the function f(z)

may be developed as in Fourier's series (5), or

f(z)
= |6 + bjGosz + a^iuz + &

2
cos2 + a

2
siu2z + . . . (17)

1 /+ TT
1 f+ ""

where, bn = -
/(^)cos nz . dz

;
an
= ~

f(z)sin nz . dx, . (18)
Tj-TT J_,

or, from (16),

. . . ; (19)
c

and from (18),

(20)cJ-t- ^ Cj_ e C

For the sine series, from x = to x =
c,

n ?^ + .

c

(22)

f(x)
= al8in + a

2
sin + a

3
sin + . (21)c c c

o

For the cosine series, from x = to # =
c,

l8in^ +.... (23)

(24)

If
<f>(x) is a periodic function whose period is equal to c, then,

(19) is true for all values of x. Hence the rule : Any arbitrary

function, whose period is T = 2c, can be represented as a series of

trignometrical functions ivith periods T, \T, \T, . . .
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EXAMPLES. Prove the following series for values of x from x = to x = c.

. . (28)

,8) ^--^'(cos^co^^sin^ +...).
. (27)

Hint. (26) is f(x) = mx developed in a series of sines ; (27) the same function

developed in a series of cosines.

(4) If f(x) = x between + c and -
c,

*-*(.!,,- Ida*? +..A . . . (28)
TT\ C 2 C )

(ii.) When the limits are + oo and - GO. Since the above

formulae are true, whatever be the value of c, the limiting value

obtained when c becomes infinitely great should be true for all

values of x.

In order to prevent mistakes in working, it is usual to employ
some equivalent sign, say A, for the integrated variable x. Hence

in place of equations (20), we may write

b"
"

^(A) COS dX
;
a"

~ ^(X) Sin A ' (29)

Substitute these values in (23),

f(x) =
*{|f

*
/(^A +

J

+

>(A) cos^ cos^
+ f

+

/(A)sin sin-^A + . . A
;

J -c- G C

lf +
%/x \jxfl wX ir . TrA . irX \= - t(X)dX\ - + cos cos + sin sin 4.

cj _; (2 c c
'

c c )'

cos - -

. . . + ^cos^A -
x) + ^cos^(A -

a;)
C C C C

since cos = 1; for the other trignometrical substitutions, see

page 499. As c is increased indefinitely, the limiting value of the

f+GO
cos a(A

-
x)da, where a = nir/c, n being

-00

any integer. Hence, the limiting form oif(x) is

f

+

J -00
(A

-
x)da, . . (30)
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for all values of x. The double integral in (30) is known as

Fourier's integral.

150. Different Forms of Fourier's Integral.

Fourier's integral may be written in different equivalent forms.

From 80,

J

+ oo
f
o

p
x

cos xdx =
\

cos xdx +
\

cos xdx ;

- 00 J - X JO

rro ro

cos xdx = I cos
(
-
x)d(

-
x)

= -
I cos xdx ;

-
oo J oo J oo

J

+ oo r*>

cos xdx = 2 1 cos xdx.
-oo Jo

Hence, we may write in place of (30),

/(*)
= ~

J

+

_ "/(A)dxcos a(A
-

x)da, . . (31)

where the integration limits in (31) are independent of a and A, and

therefore the integration can be performed in any order.

Let /(a?)
= -/( -

x). Then,

f(x)= fMd\\
X

cosa(\-x)da = ~
da\ /(A)cosa(A-z)dA;,^J - <* Jo ^0 J-oo

I f + co TO
f<

da\ /(A) COS a(A
-

x)d\ + f(\) COS a(\ -
x}d\ ;

''"J-ooJ-oo Jo
I f + 00

fO pGO

^a /(
-

X) cos a(
- A -

x)d(
-

A) + /(X) cos a(X
-
x)d\ ;.

^J Joo Jo
1 ra r f ^1

r00

^a]
-

/(A) cos a(A + x)d\ }
+ /(A) cos a(A

-
x}dX ;

^Jo I Jo Jo

If* f*

da\ /"(A){cosa(A
-

x)
-
cosa(A + x)\d\ ;

''"Jo Jo*

2/-00
|.00

I da.
\ /(A) sin aA . sin ax . d\

;

77Jo Jo

2 f r
= -

/(A)<ZA sin aA . sin ax . da, (32)
77Jo Jo

which is true for all odd functions of f(x) and for all positive values

of x in any function.

Let f(x)
=

/(
-

x), we can then reduce (31) in the same way to

2 poo
-oo

f(x)
= - fMd\\ cos aA . cos ax . da, . . (33)

^Jo Jo

which is true for all values of x, when f(x) is an even function of

#, and for all positive values of x in any function. For the trigno-

metrical reductions, see page 499.
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Although the integrals of Fourier's series are obtained by inte-

grating the series term by term, it does not follow that the series

can be obtained by differentiating the integrated series term by

term, for while differentiation makes a series less convergent,

integration makes it more convergent. In other words, a con-

verging series may become divergent on differentiation. This

raises another question, the convergency of Fourier's series.

151. The Convergency of Fourier's Series.

In the preceding developments it has been assumed :

1. That the trignometrical series is uniformly convergent.

2. That the series is really equal to f(x).

Most elaborate investigations have been made to find if these

assumptions can be justified. The result has been to prove that

the above developments are valid in every case when the function

is single-valued
* and finite between the limits + TT,* and has only

a finite number of maximum or minimum values,* between the

limits x = TT.

The curve y =
f(x) need not follow the same law throughout

its whole length, but may be made up of several entirely different

curves. A complete representation of a periodic function for all

* The terms marked with the asterisk may, perhaps, need definitions. According
to 78, the integral

r <**-. RT 2

JJ^ UJ-,
represents the area included between the curve y I/a:

2
,
the #-axis, and the ordinates

drawn from x - 1 and x - 1. Plot the curve and you will find that this result is

erroneous. The curve sweeps through infinity, whatever that may mean, as x passes

from -f 1 to 1 (see 52). The method of integration is, therefore, unreliable when the

function to be integrated becomes infinite or otherwise discontinuous at or between the

limits of integration. Consequently, it is necessary to examine certain functions in

order to make sure that they are finite and continuous between the given limits, or

that the functions either continually increase or decrease, or alternately increase

(maxima) and decrease (minima) a finite number of times. This subject is discussed in

the opening chapters of Riemann and Weber's The Partial Differential Equations of
Mathematical Physics (German F. Vieweg & Sons, Braunschweig, 1900-1901), to

which the student must refer if he intends to go exhaustively into these questions.

Single-valued and multiple-valued functions have been defined on page 275.

y = tan
-

*x is a multiple-valued function, because the ordinates corresponding to

the same value of x differ by multiples of TT. Verify this by plotting. Obviously, if

x = a and x b are the limits of integration of a multiple-valued function, we must

make sure that the ordinates x - a and x = b belong to the same branch of the curve

y =AX)-
AA
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values of x would provide for developing each term as a periodic

series, each of which would itself be a periodic function, and so on.

A discussion of the conditions of convergency of Fourier's series must be

omitted from this chapter. Byerly's An Elementary Treatise on Fourier's

Series, etc., is one of the best practical works on the use of Fourier's integrals

in mathematical physics. Fourier's ancient Theorie analytique de la Chaleur

of 1822 is perhaps as modern as any other work on this subject.* See also

Williams, Phil Mag. [5], 42, 125, 189G ;
Lord Kelvin's Collected Papers; and

Weber- Riemann's work (I.e.).

152. The Superposition of Particular Solutions to Satisfy

given Conditions.

The following remarks will amplify what has already been said

in connection with this important principle.

The reader knows that ordinary and partial differential equa-

tions differ in this respect : While ordinary differential equations

have only a finite number of independent particular integrals, partial

differential equations have an infinite number of such integrals.

To show that a value of V, in Laplace's equation, can be ob-

tained to satisfy Fourier's integral (31). Suppose that a value of

V is required in the equation

.* (34)

such that when y = CD, V = 0, and when y 0, V =
f(x). First

assume that

V = e*y + &x
,

is a solution, when a and ft are constant. Substitute in (34) and

divide by ey
+

fa.

... ^ + p2 = 0,

if this condition holds, the above value of V is a solution of (34).

Hence 7 = eav La-r
,
are solutions of (34), therefore also eavetax and

e a.ye uuc are soiutions. Add and divide by 2, or subtract and

divide by 2, 112, (3) and (4), thus

V = ey cos ax
;
and V = e-y sincur, . . (35)

are solutions of (34). Multiply the first by cos aA. and the second

of (35) by sin aA. The results still satisfy (34). Add, (22), page 499,

and
-

x)

* Freeman's translation can sometimes be obtained from the second-hand book-

sellers.
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satisfies (34). Multiply by f(\)d\ and the result is still a solution

of (34)

e
~
*vf(X) . cos a(A

-
x)d\.

Multiply by I/TT and find the limits when a has different values

between and oo. Hence

= -
f

^"Jf

e~ vf(\) cos a(\
-

x)d\, (36)

satisfies the required conditions. According as f(x) is an odd or

an even function, the right-hand side of (36) reduces to

2f* f*
I da. I e

-
a?//TA) cos ax cos aA. . d\ ;

^Jo Jo

2f
x

f
or to I da I e

~ a
vf(\) sin ax sin aX . d\.

''"Jo Jo

EXAMPLES. (1) A large iron plate IT cm. thick and at a uniform temperature
of 100 is suddenly placed in a bath at zero temperature for 10 seconds. Re-

quired the temperature of the middle of the plate at the end of 10 seconds,

supposing that the diffusivity K of the plate is 0-2 C.G.S. units, and that the

surfaces of the plate are kept at zero temperature the whole time.

If heat flows perpendicularly to the two faces of the plate, any plane

parallel to these faces will have the same temperature. Thus V depends on

one space coordinate, equation (1), 145, reduces to

The conditions to be satisfied by the solution are that V = 100, when = 0;

T" = 0, when x =
;
F = 0, when x = ir.

First, to get particular solutions. Assume F = e* + &8 is a solution when

a and j8 are constants. Substitute in (37) and divide by e** + &
. Hence

=" a2 , provided F = e** + &9
, is a solution of (37). This is true whatever

be the value of o, hence F = e"* + &Q is also a solution of (37) for all values of

a. Put a= tn, where t = V^T. Then F = e
~ w\l

n*, and V=e~ *^ e
~^

are solutions of (37).

.-. r=$e
-
&(ew + e

-^ = e
~ *& cos fix, . . (38)

is a solution of (Si). Similarly,

F = e
~

Kl^e sin /tx, ..... (39)

is a solution of (37), whatever be the value of p. By assigning particular

values to /*, we shall get particular solutions of (37). Cf. footnote, p. 306.

Second, to combine tJiese particular solutions so as to get a solution of (37)

to satisfy the three given conditions, we must observe that (39) is zero when
x = 0, for all values of

/*, and that (39) is also zero when x = ir if
/*

is an

integral number. If, therefore, we put F equal to a sum of terms of the

form Ae
~ *M 6 sin nx, say,

F = a^e
~ *9 sin x + a#

~ *"e sin 2x + a3e
~ 9 e sin Sx + ..... (40)
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to n terms, this solution will satisfy the second and third of the above

conditions, because sin IT = = sin 0. When = 0, (40) reduces to

V = Oj sin x + 2 sm %x + as sin 3x + . . . . . (41)

But for all values of x between and TT, (11),

1 = -(sin x + sin 3x + | sin 5x + ...),. . . (42)

if V = 100, we must substitute the coefficients of this series multiplied by

100, for On 03, a3 , . . . in (40), to get a solution satisfying all the required

conditions. Note 2 , 4 ,
. . ., in (42), are zero. We thus obtain

V =
^-(e

~ *e sin x + \e
~ 9 * sin 3x + . .

.)
. . (43)

This is the solution required.

To introduce the numerical data. When x = TT, 6 = 10, /c = 0*2. Hence

use a table of logarithms. The result is accurate to the tenth of a degree if

all terms of the series other than the first be suppressed. Hence use

for the numerical calculation. Use Table XXII. Ansr. 17-2 C.

Byerly (I.e.) has a splendid collection of problems of this nature. I have

arranged a set of greater interest to the chemist at the end of this chapter.

(2) If the plate is c centimetres instead of TT centimetres thick, use the

development

^SC-T +i*?* -'>
from x = 1 to x = c.

(3) An infinitely large solid with one plane face has a uniform tempera-
ture f(x). It the plane face is kept at zero temperature, what is the tempera-
ture of a point in the solid x feet from the plane face at the end of t years ?

Let the origin of the coordinate axes be in the plane face. We have to

solve equation (37) subject to the conditions

V= when x = 0; V=f(x) when t = 0.

Proceed according to the above methods for (38), (39), and (36). We thus

obtain
1 /*oo ^-j-oo

V = - da I e~ Ka2e
/(A)cos a(A

-
x).d\;

*J 9 J -oo

since positive values of x are wanted we can write

V = -I da I e~ ca
*/(X) sin ax . sin a\.d\,

*J o J o

as above. Hence from (26), page 499,

-
X)

- GOSa(A + x)}da.

-a)2

is the required solution.

This last integration needs amplification. To illustrate the method, let

u =
j

e
~ a '

2x
'2
cos bx . dx.

Laplace (1810) first evaluated the integral on the right by the following
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ingenious device which has been termed integration by differentiation. Dif-

ferentiate the given equation and

provided 6 is independent of x. Now integrate the right member by parts in

the usual way (page 168),

du b du b ,,

''db
= - W U ' r ^ = * W db -

Integrate, and
A2 &"

log it = - -r-z + C ;
or u = Ce

~
4a*-

4&

To evaluate C, put 6 = 0, whence

2a
'

as in (12), page 191. Therefore

r _ > > VTT
% = / e cos bx .dx = -^r e

Jo 2

Returning, after this digression, to the original problem, it follows that

if we write for brevity =
(A.

-
x)/2 *Jttt,

\ir \J 7= J + 7^ J
Z\tct 2\ft

If the initial temperature is constant, say = F
,

from (4), page 185, and page 368.

For numerical computation it is necessary to expand the last integral in

series as described on page 270. Therefore

F f x x3

\
N/W 12 x/irf 3 . (2 x'jtf)

3
+ ' ' '

J

'

If 100 million years ago the earth was a molten mass at 7,000 F., and,

ever since, the surface had been kept at a constant temperature F., what

would be the temperature one mile below the surface at the present time,

taking Lord Kelvin's value K = 400 ? Ansr. 104 F. (nearly). Hints. F = 7,000 ;

x = 5,280 ft.
;

t = 100,000,000 years..2 x 7,000/ 5280 \ _"

\2 x 20 x 10,0007

Lord Kelvin, "On the Secular Cooling of the Earth" (Thomson and Tait's

Treatise on Natural Philosophy, 1, 711, 1867), has compared the observed

values of the underground temperature increments, dVjdx, with those deduced

by assigning the most probable values to the terms in the above expressions.

The close agreement (Calculated : 1 increment per 3\ ft. descent. Observed :

* NOTE, oo + a finite quantity = x . It is not difficult to show either by graphic

construction or by integration that

.6 J,-x J> J>+X

I (t
- x)t.dt= z(z + x)dz ;

/ (t + x)t . dt = / z(z
-

x)dz.
J a J a-x J a J a + x



374 HIGHER MATHEMATICS. 153.

1 increment per ^ ft. descent) leads him to the belief that the data are

nearly correct. He extends the calculation in an obvious way and concludes :

" I think we may with much probability say that the consolidation cannot

have taken place less than 20,000,000 years ago, or we should have more

underground heat than we really have, nor more than 400,000,000 years ago,

or we should not have so much as the least observed underground increment

of temperature ". Vide Heaviside's Electromagnetic Theory, 2, 12, 1899.

153. Fourier's Linear Diffusion Law.

Let AB be any plane surface in a metal rod of unit sectional area

(Fig. 121). Let this surface, at any instant of time, have a uni-

form temperature (equithermal surface), and let the temperature
on the left side of the plane AB be higher than that on the right.

In consequence, heat will flow from the hot to the cold side, in

the direction of the arrow, across the surface AB.

Fourier assumes,

1. The direction of the flow is perpendicular to the surface AB;
2. The rate of flow of heat across any given surface, is pro-

portional to the difference of temperature on the two sides of the

plate.

Now let the rate of flow be uniform, the temperature of the

plane AB, 0. The rate of rise of temperature at any point in the

hot

B

plane AB, is dO/ds (this ratio

measures the so-called tem-

perature gradient). The

amount of heat which flows,

per second, from the hot to

the cooler end of the rod, is

-
c.dO/ds, where c is a con-

stant denoting the heat that

flows, per second, through

(Why the

FIG. 121.

unit area, when the temperature gradient is unity,

negative sign?)

Consider now the value of - c . d6/ds at another point in the

plane CD, distant 8 s from AB
;
this distance is to be taken so small,

that the temperature gradient may be taken as constant. The

temperature at the point s + (, will be (6
-

^os), since -dO/ds is
as

'

the rate of rise of temperature along the bar, and this, multiplied

by 8s, denotes the rise of temperature as heat passes from the
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point s to s + Ss. Hence the amount of heat flowing through the

small section ABCD will be

d ( dO~ CJ-( e -
T-

ds\ ds

will denote the difference between the amount of heat which flows

in at one face and out at the other. This expression, therefore,

denotes the amount of heat which is added to the space ABCD
every second. If a- denotes the thermal capacity of unit volume,

the thermal capacity of the portion ABCD is (1 x 8s)cr. Hence
df)

the rate of rise of temperature is <r 8$. Therefore,
(it

d2o. do.
. c^> s ^T*.

ds'2 dt

Put o/<r
= K

; this equation may then bs written,

d*0 1 dO ,44v

d*2
= -

K 'dt'

where K is the diffusivity of the substance.*

Equation (44) represents Fourier's law of diffusion. It covers

all possible cases of diffusion where the substances concerned are

in the same condition at all points in any plane parallel to a given

plane. It is written

*T.i.?i (45)
^X2 K t>

Lord Kelvin calls V the quality of the substance at the time t,

at a distance x from a fixed plane of reference. The differential

equation (45), therefore, shows that the rate of increase of quality

per unit time, is equal to the product of the diffusivity and the

rate of increase of quality per unit of space of quality. The quality

depends on the subject of the diffusion. For example, it may
denote one of the three components of the velocity of the motion

of a viscous fluid, the density or strength of an electric current per

unit area perpendicular to the direction of flow, temperature, the

potential at any point in an isolated conductor, or the quantity of

salt diffusing in a given solution.

Ohm's law is but a special case of Fourier's linear diffusion

law. Fick's law of diffusion is another. The transmission of

telephonic messages through a cable and indeed any phenomenon
of linear propagation is included in this law of Fourier.

* This equation is obtained from (1), 145, by remembering that we are dealing

only with linear flow, in one direction
;
the y and z terms do not, therefore, come in at

all. (44) is a special case of that more general equation.
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EXAMPLES. (1) Show by actual differentiation that (45) is satisfied by

F= e-^sintft -
ax), where o, $ are two constants such that 0/2a

2 = K. Hint,

first show that 32
7/9o:

2 = e
-
**2a?cos(pt

-
ax), then that

'dVf'dt
= e

~
**p cos(0<

-
ax), etc.

(2) Show that (45) is satisfied by making
V = e

- <2a2
cos(j8<

-
ax),

or V= A + A^e
~ airsiu(^t

-
Ulx + ei )

+ A#~ ^s'm(ft2t
-

a^x + e2) + . . .,

where A ,
A

lt
. . ., e1? 2 ,

. . ., are constants. See page 350.

(3) Deduce Fick's law of diffusion, similar in form to (45), for a salt solu-

tion in a vertical vessel of uniform sectional area, the solution being more

concentrated in the lower part of the vessel. Assume (1) the rate of diffusion

(quantity of salt passing through unit sectional area in unit time) is pro-

portional to the difference in the concentration on each side of a given

horizontal plane, (2) the substance diffuses in a vertical direction. Hint,

follow the discussion preceding (44), and make the proper changes.

If V denotes the concentration of the solution in any plane x, at any time

t, Fick's law is written,

where K depends on the nature of the diffusing substance.

154. The Solution of Fick's Equation in terms of a

Fourier's Series.

The experimental basis of the following discussion will be

found in a memoir by Simmler and Wild in Poggendorffs Annalen

for 1857 (100, 217, 1857) : Fill a small cylindrical tube of unit

sectional area, and height x, with a solution of salt. Let the tube

and contents be submerged in a vessel containing a great quantity
of water so that the open end of the cylindrical vessel, containing
the salt solution, dips just beneath the surface of the water. Salt

solution passes out of the diffusion vessel and sinks towards the

bottom of the larger vessel. The upper brim of the diffusion

vessel, therefore, is assumed to be always in contact with pure
water. Let h denote the height of the liquid in the diffusion tube,

reckoned from the bottom.

(i.)
To find the concentration (V) of the dissolved substance in

different parts (x) of the diffusion vessel after the elapse of any
stated interval of time (t).

This is equivalent to finding a solution of Fick's equation, (46),

of the preceding section, which will satisfy the conditions under

which the experiment is conducted. These so-called "
limiting

conditions
"

are :
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.When x = h, V =
; . . . . (1)

when x = 0, D7/fo - 0; ... (2)

when t = 0, V = 7..... (3)

The reader must be quite clear about this before going any further.

What do 7, a; and t mean ? F evidently represents the concen-

tration of the solution at the beginning of the experiment ; at the

top of the diffusion vessel, obviously x = h, and 7 is zero, because

there the water is pure ;
the second condition means that at the

bottom of the diffusion vessel, the concentration may be assumed

to be constant during the experiment.

First, deduce particular solutions exactly as in the first example
of the preceding section. Thus

7 = ae-'AsosyuuE, ... (4)

and V = be-^smpXj ... (5)

are particular solutions, a and b simply denote arbitrary constants.

Differentiate (4) and we get

Now when x 0, sin/xic vanishes, therefore, when x = 0, condi-

tion (2) is satisfied. But, in order that (4) may satisfy the first

condition, we must have

cos fih
= 0, when x = h.

But COS \TT
= COS fTT = . . .

= COS (2tt
-

!)TT
= 0,

where TT = 180 and n is any integer from 1 to oo. Hence, we

must have

' W W Ml
'

2k '

in order that cos /uA may vanish.

Substitute these values of
//, successively in (4) and add the

results together, we thus obtain

7= Oja'aM cosr + a.
2
e Cos -- + ... to inf., (6)

which satisfies two of the required conditions, namely (1) and (2).

We must now determine the coefficients a
lt
a

2 ,
... in (6), in

order that the third condition may be satisfied by the particular

solution (4), or rather (6). This is done by allowing for the initial

conditions, when t = 0, in the usual way. When t = 0, 7 = 7 .

Therefore, from (6),

TTX 3-n-x
7 = a

x
cos + a., cos

- + . . ., . . (7)
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is true for all values of x between and h. Hence, as on page

2F A 2F f*

;
a

*
=
irJ

cos

These results have been obtained by equating each term of (7) to

zero, and integrating between the limits and h.

Substituting these values of a
Q ,

a
lt

. . . in (6), we get a solu-

tion satisfying the limiting conditions of the experiment. If desired,

we can write the resulting series in the compact form,

_

1
5TTL' cosTf6 (8)

where the summation sign between the limits n = GO and n = 1

means that n is to be given every positive integral value 1, 2, 3. ...

to infinity, and all the results added together.

EXAMPLE. If we reckon h from the top of the diffusion vessel, show that

we must use (5) exactly as we have just employed (4). In this case " cos "

(8) becomes " sin ".

NOTE. If the limits in (8) are o and oo
,
write " 2n + 1

"
for " 2n - 1 ".

(ii.)
To find the quantity of salt (Q) which diffuses through any

horizontal section in a given time (T).

Differentiate (6) with respect to x, multiply the result through
dF

with Kdt, so as to obtain -
K^dt. If x represents the height of

any horizontal section, -
nq-^-dt,

will represent the quantity of

salt which passes through this horizontal plane in the time dt.

q represents the area of that section (example (3), page 374).

Let q = I.

f^ 7^ fW -()'" **
* g = -

"ts*
=
]5(v sm M + -

Integrate between the limits and T. The result represents the

quantity of salt which passes through any horizontal plane (x) of

the diffusion vessel in the time T, or,

(iii.)
To find the quantity of salt (QJ which passes from the

diffusion vessel in any given time (T).

Substitute h = x in (9). The sine of each of the angles

JTT, |TT, . . ., (2w
-

1), is equal to unity. Therefore,

. (10)
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(iv.) To find the value of K, the coefficient of diffusion.

Since the members of series (10) converge very rapidly, we

may neglect the higher terms of the series. Arrange the experi-

ment so that measurements are made when x = h, \h, \h, . . .,

in this way, sin 7rx/2h, ... in (9) become equal to unity. We
thus get a series resembling (10). Substitute for the coefficient

and we obtain, by a suitable transposition of terms,

#

(v.) To find the quantity of salt (Q.2) which remains in the

diffusion vessel after the elapse of a given time (T).

The quantity of salt in the solution at the beginning of the

experiment may be represented by the symbol QQ . Q may be

determined by putting t = in (9) and eliminating sin -n-x/Qh, . . .

as indicated in (iv.).

Co =
(a>i

~
\<*>-

and Q, = Q -Ql ;

(vi.) To find the concentration of the dissolved substance in

different parts of the diffusion vessel when the stationary state is

reached.

After the elapse of a sufficient length of time, a state of equili-

brium is reached and the concentration of the substance in different

parts of the vessel remains stationary. In this case,

Wfit = 0; W/Da? = 0.

Integrate the latter, we get

V = ax + b, . . . . (13)

where a and b are constants to be determined from the experi-

mental data, as described in 106. See Ostwald's Solutions,

Chapter vi. (Longmans, Green & Co., 1891), for experimental work.

The chief difficulty in the application of Fourier's theorem to

diffusion experiments is to make the series satisfy the limiting
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conditions. The following examples will serve to show how

Fourier's series is to be employed in practical work. For the

experimental details, the original memoirs must be consulted.

EXAMPLES. It will be found convenient to refer to the following alter-

native way of writing Fourier's series :

)
. d, +

|2f;
".^ cos ^,M .<**, . (U)

true for any value of x between and c (see pages 365 and 366).

(1) Find an expression equal to v when x lies between and a, and equal

to zero, when x lies between a and b. Here /(A) = v, from A = to A = a, and

f(\) = 0, from A = a to A = b ; c = b ; cos
'

/(A) . d\, becomes

or, sin
'

. Hence the required expression is,

when x = a, this expression reduces to %v.

(2) Pick's diffusion experiments (Pogg. Ann., 94, 59, 1855 ;
translated in

the Phil. Mag., July, 1855). When deducing Fick's equation, if the area of

the diffusion vessel is some function of its height x, show that Fick's equation

assumes the form

where q denotes the area of the diffusion vessel at a distance x in the direction

of the diffusion.

Before this formula can be of any practical use, the equation to the curve

described by the walls of the vessel must be known. For a conical vessel,

q = 7rw2.r2
,
where the apex of the cone is at the origin of the coordinate axes,

m is the tangent of half the angle included between the two slant sides of the

vessel. Fick has made a series of crude experiments on the steady state in a

conical vessel with a circular base (funnel-shaped). Hence show that,

gJVllT-o^-.r-c. + fli . . . as)
Bar

2 x ^)x x

The integration constants C
l
and C2 are to be evaluated by means of the

experimental data, 106.

(3) Graham's diffusion experiments (Phil. Trans., 151, 183, 1861). A cylin-

drical vessel 152mm. high, and 87 mm. in diameter, contained 0'7 litre of

water. Below this was placed 01 litre of a salt solution. The fluid column
was then 127 mm. high. After the elapse of a certain time, successive portions
of 100 cc., or | of the total volume of the fluid, were removed and the quantity
of salt determined in each layer.

The limiting conditions are : At the end of a certain time t, for x = and

x = H
, 'dVj'dx = 0. (Why?) Note that x is here reckoned from the top of

the liquid. H denotes the total height of the liquid column. Let h denote

the height of the salt solution at the beginning of the experiment, VQ
its con-

centration, .-. h = iff; /(A), in (14),
= V from x = to x = h and /(A)

= V= 0,

from x = h to x = H, when t = 0.
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To adapt these results to Fourier's solution of Fick's equation, first show

that

V= (acosfjLX + bBmf*x)e-^
Kt

, .... (17)

is a particular integral of Fick's equation, a, 6, are constants to be determined

from the conditions of the experiment. Differentiate (17) with respect to x

and we get

'dV/'dx
=

(
- fM sin /JLX + /u&cos/i.r)^"'*

2
**. . . (18)

In the layer x = 0, 'dVf'dx = 0, whatever the value of t, because no salt

goes out from and no salt enters the solution at this point. The concentra-

tion V must at all times satisfy Fick's elementary law, at all points between

x = and x = H. When x 0, cos* = 1, but sin a; = 0, therefore, from (18),

rtsin/ij;
-

bcosfj.x = 0,

b must be zero, and, since sin ir = 0, /t must be so chosen that

p.H = nit ; or, p.
= nw/H,

where n has any value 0, 1, 2, 3, . . .

Add up all these particular integrals for the general equation

e

where the constant a has still to be determined from the initial conditions.

For t = 0,

V = V
n =

"ancos(^\ = V, from x = 0, to x = h
;H )

1

\ = 0, from x = h, to x = H.H )

Since /(A) = 7 , in (14), when n = 0,

In the same way it can be shown that

= .

ir n H '

Taking all these conditions into account, the general solution appears in the

form,

which is a standard equation for this kind of work. In Graham's experi-

ments, h = H. Hence the concentration V in any plane x of the diffusion

vessel, is obtained from the infinite series :

7 = Zo + 2Iov
= - 1

8in
n

. CoS !^ . e
- 'MM*. . (21)

8 v i * H
As indicated in Chapter V., an infinite series is practically useful only

when the series converges rapidly, and the higher terms have so small an

influence on the result that all but the first terms may be neglected. This is

often effected by measuring the concentration at different levels x, so related

to H that cos(nirx/H) reduces to unity; also by making t very great, the second

and higher terms become vanishingly small. See Weber's experiments below.
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The quantity of salt Qr in the rth layer, is given by the integral of Vdx,

between the limits x =
(?

- l)H and x = %rH, or,

.

where \VQH multiplied by the cross section of the vessel (here supposed unity)

denotes the quantity of salt present in the diffusion vessel.

Unfortunately, a large number of Graham's experiments are not adapted

for numerical discussion, because the shape of his diffusion vessels, even if

known, would give very awkward equations. A simple modification in ex-

perimental details, will often save an enormous amount of labour in the

mathematical work.

(4) Stefan's diffusion experiments (Wien.-Akad. Ber., 79, ii., 161, 1879). If

Qo denotes the quantity of salt present in the diffusion vessel of Graham, when

t is very great, show, preceding example, that

Qi+ Q4+Q5 +Qs = &V<>H = $Q< (23)

where q denotes the area of a cross section of the vessel.

When deducing (23) from (22), it is most instructive to compile a table of

values of the factor cos(2r
-

l)>nr/16, for values of r from r = 1 to r = 8, and

from n 1 to n = 4. Then show that for n = 1, 2, 3, the sums, for values of

r = 1, 4, 5, 8, mutually cancel each other, and that the value of t in the higher
terms makes them negligibly small. Here is the table :
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where A and B are known constants, B being very small in comparison with

A. This difference of potential or electromotive force, can be employed to

determine the difference in the concentrations of the two solutions about the

zinc electrodes.

To adapt these conditions to Fick's equation, let ^ be the height of the

lower, h.2 of tne upper solution, therefore, 1^ + h2
= H. The limiting con-

ditions to be satisfied for all values of t, are 3F/9 = 0, when x = 0, and

^ Vfdx = 0, when x = H. The initial conditions when t = 0, are V = F2 , for

all values of x between x = h and x = H. From this proceed exactly as in

example (3), and show that

_H IT n H
and the general solution

y.FA+KA _ Ok-I2f-n.to^o.^.**. (25)H TT n = \ n H H
This equation only applies to the variable concentrations of the boundary

layers x = and x = H. It is necessary to adapt it to equation (24). Let

the layers x = and x = H, have the variable concentrations V and V"

respectively.

In actual work, H was made very small. After the lapse of one day

(t
=

1), the terms Jsin kirh^H, etc., and i sin 5-irhJH, etc., were less than j^.
Hence all terms beyond these are outside the range of experiment, and may,

therefore, be neglected. Now h was made as nearly as possible equal to \H,
in order that the term sin STrhJH, etc., might vanish. Hence,

V" - V = 2
~

i sin
*

e
-

IT 8

2(F2 - 7J

Now substitute these values of V" - V and V" + V in (24), observing that

F2 ,
V

lf 7^, 7i2, sin 7r/3, sin 2ir/3 and H, are all constants. The difference of

potential E, between the two electrodes, due to the difference of concentration

between the two boundary layers V and F", is

E = A
l
e-** t lH*-B

l
e-^* t lH2

,
. . . (26)

where A
l
and B

l
are constant. Since B is very small in comparison with A,

the expression reduces to

E = A
l
e*'tia

*, ..... (27)

in a very short time.
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This equation was used by Weber for testing the accuracy of Fick's law.

The values of the constant, ir
2
*///

2
,
after the elapse of 4, 5, 6, 7, 8, 9, 10 days

were respectively -2032, -2066, -2045, -2027, -2027, '2049, -2049. A very satisfac-

tory result.

(6) A gas A, obeying Dalton's law of partial pressures, diffuses into an-

other gas, show that the partial pressure pl
of the gas A, at a distance x, in

the time t, is

(7) Loschmidt''s diffusion experiments (Wien.-Akad. Ber. t 61, 367, 1870 ;

62, 468, 1870). Loschmidt arranged two cylindrical tubes vertically, so that

communication could be established between them by a sliding metal plate.

Each tube was 48*75 cm. high and 2-6 cm. in diameter and closed at one end.

The two tubes were then filled with different gases and placed in communica-
tion for a certain time t. The mixture in each tube was then analysed.

Let a = 97'5 cm. It is required to solve equation (28) so that when t = 0,

Pi = Po> from x = a to x = i 5 Pi = 0. frona x = Ja to x = a ; 3ft/3ar = 0, when
x = and x = a, for all values of t. Note, ^ denotes the original pressure of

the gas. Hence show that

ft = 2j
+ 2"

=
"Ismf cos^ - *

At/a.. . . (29)
n = 1

n a

The quantity of gas contained in the upper and lower tubes, after the elapse

of the time t, is, respectively,

r-2

ro

Pl . dx ; Q" = q
I a/2

a/2pj .dx,. . . (30)

,vhere q is the sectional area of the tube. Hence show that

- At/a* + I, - STrf/rf + .

3^

from which the constant can be determined. If the time is sufficiently long,

where D and S respectively denote the sum and difference of the quantity of

gas contained in the two vessels. Loschmidt measured D, S, t, and a, and

found that the agreement between observed and calculated results was very

close.

(8) The velocity of tJie solution of solids is a special case of diffusion. The

layer of liquid in immediate contact with the solid is to be regarded as a

saturated solution, the rate of solution thus depends upon the rate of the

diffusion of the salt from the saturated solution to the adjoining layers of

solvent. This problem can be attacked by the above method. For experi-

mental work based upon the relation

d~ = qC(Q -
x) ; or, \ log ^-^ = constant . . (32)

(see Noyes and Whitney, Zeitschrift fiir physikalische CJwmie, 23, 6S9, 1897 :

Bruner and Tolloczko, ibid., 35, 283, 1900) ;
in this formula Q denotes the

quantity of salt contained in a saturated solution, x the amount dissolved in

the time t, q the area of the dissolving surface, C the velocity constant.
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PART III.

USEFUL EESULTS FKOM ALGEBEA AND
TKIGNOMETEY.

CHAPTEE IX.

HOW TO SOLVE NUMERICAL EQUATIONS.

155. Some General Properties of the Roots of Equations.

THE solution of algebraic and transcendental equations is an im-

portant branch of practical mathematics. The object of solving

these equations is to find what value or values of the unknown
will satisfy the equation, or will make one side of the equation

equal to the other. Such values of the unknown are called roots

or solutions of the equation.

General methods for the solution of algebraic equations of the

first, second and third degree are treated in regular algebraic text-

books
;

it is, therefore, unnecessary to give more than a brief

resum& of their more salient features.

R. N. Abel and Wantzel have brought forward demonstrations

with the object of proving that general methods for the solution

of equations of a higher degree than. the fourth are impossible.

M'Ginnis has recently published a method which he claims can be

employed for equations as high as the twelfth degree.

Equations of higher degree than the fourth are comparatively
rare in practical work.* Indeed we nearly always resort to the

approximation methods for finding the roots of the numerical

equations found in practical calculations.

* Otherwise I should take advantage of the generosity of Professor M'Ginnis, and

summarise his methods. They will, however, be found in The Universal Sulutwn, 1900

(Swan, Sonnenschein & Co.).

BB
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The reader must distinguish between identical equations like

(x + I)
2 = <r

2 + 2x + 1,

which are true for all values of x, and conditional equations like

z2 + 2x + 1 = 0,

which are only true when x has some particular value or values. In this case,

for x = - 1.

An equation like

x2 + 2x + 2 = 0,

has no real roots because no real values of x will satisfy the equation. By

solving as if the equation had real roots, the imaginary again forces itself on

our attention. The imaginary roots of this equation are - 1 + \/ - 1, or - 1 + i.

The general equation of the nth degree is

xn + axn
"

1 + bxn
~

2 + . . . + sx + E = 0. . (1)

The term R is called the absolute term. If n = 2, the equation

is a quadratic, x2 + ax + E =
;

if n = 3, the equation is said to

be a cubic ;
if n = 4, a biquadratic, etc. If xn has any coefficient,

we can divide through by this quantity, and so reduce the equa-

tion to the above form. When the coefficients a, b, . . ., instead

of being literal, are real numbers, the equation is said to be

numerical.

The following synopsis of results proved in the regular text-

books is convenient for reference :

1. Every equation of the nth degree has n equal or unequal roots and no

more (Gauss' law). E.g.,

x5 + X* + x + 1 = 0,

has five roots and no more.

2. If an equation can be divided by x -
a, without remainder, a is a root

of the equation. More generally, if o, , 7, are the roots of an equation of the

third degree,

xs + atf + bx + c = (x
- a)(x

-
0)(x

- 7).
. . (2)

3. If the results obtained by substituting two numbers are of opposite

signs, at least one root lies between the numbers substituted.

4. An equation of an even degree, with its absolute term negative, has at

least two real roots of opposite sign.

5. An equation of an odd degree has at least one real root, the same in

sign as the absolute term.

6. Imaginary roots in an equation with real coefficients occur in pairs.

E.g., if a + /8 \/ - 1 is one root of the equation, o -
/3 V - 1 is another.

7. The sum of the roots of an equation is equal to the coefficient - b of

the second term ; the sum of the products of the roots taken two at a time is

equal to + c
;
the products of the roots taken three at a time is equal to - d,

etc. ; the product of all the roots is equal to -
(absolute term), if n is odd, and

to + (absolute term), if n is even.
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8. An equation, f(x), cannot have more positive roots than there are

changes of sign in /(
-

x) (Descartes' rule of signs). E.g., in

x + x*-x* + x+l = = f(x) ;
- x + Xs + x* - x + 1 = = /(

-
x),

there are two changes of sign. Hence the equation has no more than three

negative and two positive real roots. The remainder are imaginary roots.

a. If the coefficients are all positive, the equation cannot have a positive

root. Such is

ar
6 + ar5 + x + l=0.

b. If the coefficients of the even powers of the unknown have the same

sign, and the coefficients of the odd powers of the unknown have the opposite

sign, the equation has no negative root. E.g.,

Xl + >T
5 _ yA + X3 _ X2 + x _ I =

c. If an equation has only even powers of x, with its coefficients all of the

same sign, there is no real root. Thus,
x8 + or

4 + x2 + 1 = 0.

d. If the equation has only odd powers of x, with coefficients all of the

same sign, there are no real roots other than x = 0. For instance,

x7 + x5 + a*
3 + x = 0.

156. The General Solution of Quadratic Equations.

To recapitulate the results of the elementary textbooks :

After suitable reduction, every quadratic may be written in the form :

ax2 + bx + c = ...... (1)

If a and ft represent the roots of this equation, x must be equal to a or
,

where
- b + \/62 - 4ac - b - \/b* - 4ac

The sum and product of these roots are

a + ft
= -

6/a ; a/8 = c/.

Hence if one of the roots is known, the other can be deduced directly. If

a 1, the sum of the roots is equal to the coefficient of the second term with

its sign changed, the product of the roots is equal to the absolute term.

Equation (1), may be variously written

a{x*- (a + 0)x + 0)8}
= 0;

a{x
2 - (Sinn of Roots)x + (Product of Roots)} = ;

(.'
-

a) (x
-

0)
=

;
a-
2 + -r + - = 0.

a a

From (2), we can deduce many important particulars respecting the nature of

the roots of the quadratic. These are :
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Relation between the Coefficients.
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Plot the graph of each of these equations, using the table of cubes, page 518.

The abscissa of the point of intersection of these two curves is one root of the

given equation, x = OM (Fig. 123) is the root required.

-y
FiG. 122.

(3) Locate the roots of x"2 - 8x + 9 = 0. Proceed as before by assigning
successive values to x. Roots occur between 6 and 7 and 1 and 2.

(4) Show that or
3 - 6x2 + Hx -6 = has roots in the neighbourhood of

1, 2, 3.

The method indicated in the second example, may be employed to find

the roots of simultaneous equations, thus

(5) Solve x2 + ?/ = 1
;
x2 - 4x = i/

2 -
By.

Plot the two curves as shown in Fig. 124,

hence x = + OM are the roots required.

The graphic method can also be em-

ployed for transcendental equations.

(6) If x -f cos x = 0, we may locate the

roots by finding the point of intersection of

the two curves y - x and y = cos x.

(7) If x + ex = 0, plot y= e* and y= - x.

Table, page 518.

(8) Show, by plotting, that an equation
of an odd degree with real coefficients, has

either one or an odd number of real roots.

For large values of x, the graph must
lie on the positive side of the cc-axis, and on FIG. 124.

the opposite side for large negative values of x. Therefore the graph must

cut the ar-axis at least once ; if twice, then it must cut the axis a third time,

etc.

(9) Show, by plotting, that an equation of an even degree with real co-

efficients, has either 2, 4, ... or an even number of roots, or else no roots

at all.

(10) Prove, by plotting, (3), 155.

(11) Plot x2 - 2.r + 1 = 0. The curve touches but does not cut the .r-axis.

This means that the point of contact of the curve with the x-axis, corresponds
to two points infinitely close together. That is to say, that there are at least

two equal roots.

The graphic method may be applied to the most complicated equations.
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(12) Find numbers, correct to three significant figures,
which will satisfy

the following equations :

(i.) 9s3 - 41x'8 + 0-52* - 92 = 0. (iii.) & - e~* + Q-lx - 10 = 0.

(ii.)
2-42X3 - 3-l5logeX - 20-5 = 0. (iv.) 2*3 '1 - 3x - 16 = 0.

(London S. and A. Depart., 1899 and 1900 Examinations.) Ansrs.
(i.) 2-35

;

(ii.) 2-11; (iii.) 2-22; (iv.) 2-18.

The accuracy of the graphic method depends on the scale of the diagram
and the skill of the draughtsman.

158. Newton's Method for the Approximate Solution of

Numerical Equations.

The above method indicates that the equation

f(x)
= y = x*-7x+l, . . (1)

has a root lying somewhere between - 3 and - 4. We can keep
on assigning intermediate values to x until we get as near to the

exact value of the root as our patience will allow. Thus, if x= -3,

y = + 1, if x = -
3'2, y = - 3'3. The desired root thus lies some-

where between - 3 and - 3 '2. Assume that the actual value of

the root is - 3'1. To get a close approximation to the root by

plotting is a somewhat laborious operation. Newton's method,

based on Taylor's theorem, allows the process to be shortened.

Let a be the desired root, then

/(a)
= a3 - 7a + 7. . . . (2)

As a first approximation, assume that a = - 3-1 + h, is the required

root.

From (1), by differentiation,

dy/dx = 3x2 - 7
; d*y/dj? = 6x

; d*y/dx* = 6. . (3)

All succeeding derivatives are zero.

By Taylor's theorem,

Put v = - 3-1 and a = v + h.

ft \ 4-( , i\ ft \ i>dv h'2 d'2v h
j()=j( + k)= /(V) + h-

rx
+ -.- +

Neglecting the higher powers of h, in the first approximation,

where /'(y)
= dv/dx. The value of f(v) is found by substituting

-
3'1, in (2), and the value of f(v), by substituting

- 3 4

1, in the

first of equations (3), thus, from (4),

h =f(v)lf(v] = -
1-091/21-83 = - 0-04999.

Hence the first approximation to the root is - 3-05.
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As a second approximation, assume that

a = - 3-05 + h
l
= v

l
+ hr

As before,

fcj
= -

/(oj/ffa) = -
-022625/20-9081 = - -001082.

The second approximation, therefore, is - 3-048918. We can, in

this way, obtain third and higher degrees of approximation. Here

is another example to try :

x3 - 2x - 5 = 0,

has a root between 2 and 3. The first approximation is 2-0946,

the second 2*09455148. Generally, the first approximation gives

all that is required for practical work.

EXAMPLES. (1) In the same way show that the first approximation to

one of the roots of x* - x'2 - 2x + 4 = 0, is a 4-2491 . . . and the second

a = 4-2491405. . . .

(2) If .i-
1 + 2x2 + 3* - 50 = 0, x = 2-9022834. . . .

(3) If x2 + 4 sin x = 0, = - 1-933. . . .

159. How to Separate Equal Roots from an Equation.

This is a preliminary operation to the determination of the

roots by a process, perhaps simpler than the above.

If a, ft, y, . . . are the roots of an equation of the nth degree,

xn + axn ~ l + . . . + sx + E = 0,

(*-.)(-0 . . . (x-r,) = 0.

If two of the roots are equal, two factors, say x - a and x -
ft,

will be identical and the equation will be divisible by (x
-

a)- ;
if

there are three equal roots, the equation will be divisible by (x
-

a)
3

,

etc.

If there are n equal roots, the equation will contain a factor

(x
-

a)", and the first derivative will contain a factor n(x
-

a)""
1

,

or x - a will occur n - 1 times.

The highest common factor of the original equation and its

first derivative must, therefore, contain x -
a, repeated once less

than in the original equation. If there is no common factor, there

are no equal roots.

EXAMPLES. (1) jr
5 - So:2 - 8.1- + 48 = has a first derivative 3x2 - lO.r - 8.

The common factor is x - 4. This shows that the equation lias two roots

equal to x - 4.

(2) x4 + Tx3 - So,-
2 - 55.V + 50 = has two roots each equal to x + 5.
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160. Sturm's Method of Locating the Real and Unequal
Roots of a Numerical Equation.

Newton's method of approximation does not give satisfactory

results when the two roots have nearly equal values. For instance,

the curve

y = x3 - Ix + 7

has two nearly equal roots between 1 and 2, which do not appear
if we draw the graph for the corresponding values of x and y, viz.:

x = 0, 1, 2, 3, . . . ;

y = 7, 1, 1, 13, ...
The problem of separating the real roots of a numerical equa-

tion is, however, completely solved by what is known as Sturm's

theorem. It is clear that if x assumes every possible value in

succession from + oo to -
oo, every change of sign will indicate

the proximity of a real root. The total number of roots is known
from the degree of the equation, therefore the number of imaginary
roots can be determined by difference.

Number of real roots + Number of imaginary roots = Total number of roots.

Sturm's theorem enables these changes of sign to be readily

detected. The process is as follows :

First remove the real equal roots, as indicated in the preceding

section, let

y = x* - Ix + 7, . . (1)

remain. Find the first differential coefficient,

dy/dx = 3x2 - 7 (2)

Divide the primitive (1) by the first derivative (2), thus,

(x
3 -Ix + 7)/(Sx

2 -
7).

Change the sign of the remainder and divide by 7, the result

R = Zx -
3, . . . . (3)

is now to be divided into (2). Change the sign of the remainder

and we obtain,

B-l (4)

The right-hand sides of equations (1), (2), (3), (4),

y? - Ix + 7; 3x2 - 7; 2x - 3; 1,

are known as Sturm's functions.

Substitute - oo for x in (1), the sign is negative ;

(2), ,, positive;

,, ,, (3), ,, negative;

(4), positive.
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Note that the last result is independent of x. The changes of

sign may, therefore, be written

In the same way,

Value of x.
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EXAMPLES. Locate the roots in the following equations :

(1) x* - 3a-
2 - 4.r + 13. Ansr. Between - 3 and - 2

;
2 and 2 -5 ; 2-5 and 3.

(2) or* - 4o.-
2 - 6x + 8. Ansr. Between and 1

;
5 and 6 ;

- 1 and - 2.

(3) x4 + or - ic
2 - 2x + 4. We have five Sturm's functions for this equa-

tion. Call the original equation (1), the first derivative, Ix3 + 3x* - 2z - 2, (2) ;

divide (1) by (2) and a-
2 + 2x - 6 (3) remains ;

divide (2) by (3) and - x + 1 (4)

remains ;
divide (3) by (4) and change the sign of the result for + 1 (5). Now

let x = + oo and -
oo, we get

+ + -\ h (2 variations of sign) : H f- + + (2 variations).

This means that there are no real roots. All the roots are imaginary.

(4) The equation, 3? - 3rx2 + 4^ = 0, is obtained in problems referring

to the depth to which a floating sphere of radius r and density p sinks in

water. Solve this equation for the case of a wooden ball of unit radius and

specific gravity 0'65. Hence, x3 - Sx + 2'6 = 0. The three roots, by Sturm's

theorem, are a negative root, a positive root between 1 and 2, and one over 2.

The depth of the sphere in the water cannot be greater than its diameter 2.

The negative root has no physical meaning. These two roots must, therefore,

be excluded from the solution. The other root, by Newton's method of

approximation, is x = 1-204. . . .

In this last example we have rejected two roots because they were incon-

sistent with the physical conditions of the problem under consideration. This

is a very common thing to do. Not all the solutions to which an equation

may lead are solutions of the problem. Of course every solution has some

meaning, but this may be quite outside the requirements of the problem.

Imaginary roots may be obtained, when the problem requires real numbers,
the roots may be negative or fractional, when the problem requires positive

or whole numbers. Sometimes, indeed, none of the solutions will satisfy the

conditions imposed by the problem, in this case the problem is indeterminate.

To illustrate :

1. A is 40 years, B 20 years old. In how many years will A be three

times as old as B ? Let x denote the required number of years.

.-. 40 + x = 3(20 + x) ;
or x = - 10.

But the problem requires a positive number. The answer, therefore, is that

A will never be three times as old as B. (The negative sign means that A
was three times as old as B, 10 years ago.)

2. A number x is squared ; subtract 7 ;
extract the square root of the

result
;
add twice the number, 5 remains. What was the number x?

.-. 2z + x/(z
2 -

7)
= 5.

Solve in the usual way, namely, square 5 - 2x = \'.r
2 - 7 ; rearrange terms

and use (2), 156. Hence x = 4 or |.

The ultimate test of every solution is tliat it shall satisfy the equation when'

substituted in place of the variable. If not it is no solution. On trial both

solutions, x = 4 and x = 2|, fail to satisfy the test. These extraneous solutions

have been introduced during rationalisation (by squaring).
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161. Horner's Method for Approximating to the Real

Roots of Numerical Equations.

When the first significant digit or digits of a root have been

obtained, by, say, Sturm's theorem, so that one root may be

distinguished from all the other roots nearly equal to it, Horner's

method is one of the simplest and best ways of carrying the

approximation as far as may be necessary. So far as practical

requirements are concerned, Horner's process is perfection. The

arithmetical methods for the extraction of square and cube roots

are special cases of Horner's method, because to extract \9, or

x/9, is equivalent to finding the roots of the equation #2 - 9 = 0,

or a3 - 9 = 0.*

In outline, the method is as follows : Find by means of Sturm's

theorem, or otherwise, the integral part of a root, and transform

the equation into another whose roots are less than those of the

original equation by the number so found. Suppose we start

with the equation
a;

8 - Ix + 7 - 0, . . . (1)

which has one real root whose first significant figures we have

found to be 1'3. Transform the equation into another whose

roots are less by 1-3 than the roots of (1). This is done by

substituting u + 1*3 for x. In this way we obtain,

u + 3-95%'2 - 1-93M + '097 - 0. . . (2)

The first significant figure of the root of this equation is '05. Lower

the roots of (2) by the substitution of v + '05 for u in (2). Thus,

v3 + 4-05i72 - 1-53250 + -010375 - 0. . . (3)

The next significant figure of the root, deduced from (3), is '006.

We could have continued in this way until the root had been

obtained of any desired degree of accuracy.

*
Chrystal, Textbook of Algebra (A. & C. Black, London, 1898, Part I., page 346),

s;iys :

"
Considering the remarkable elegance, generality, and simplicity of the method, it

is not a little surprising that it has not taken a more prominent place in current mathe-

matical textbooks. Although it has been well expounded by several English writers,

... it has scarcely as yet found a place in English curricula. Out of five standard

Continental textbooks where one would have expected to find it we found it mentioned

in only one, and there it was expounded in a way which showed little insight into its

true character. This probably arises from the mistaken notion that there is in the

method some algebraic profundity. As a matter of fact, its spirit is purely arith-

metical
;
and its beauty, which can only be appreciated after one has used it in

particular cases, is of that indescribably simple kind which distinguishes 'the use of

position in the decimal notation and the arrangement of the simple rules of arithmetic.

It K in short, one of those things whose invention was the creation of a commonplace."
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Practically, the work is not so tedious as just outlined. Let a, b, c,

be the coefficients of the given equation (1), E the absolute term.

1. Multiply a by the first significant digits of the root and add

the product to b. Write the result under b.

2. Multiply this sum by the first figures of the root, add the

product to c. Write the result under c.

3. Multiply this sum by the first figure of the root, add the

product to E, and call the result the first dividend.

4. Again multiply a by the root, add the product to the last

number under b.

5. Multiply this sum by the root and add the product to the

last number under c, call the result the first trial divisor.

6. Multiply a by the root once more, and the product to the

last number under b.

7. Divide the first dividend by the first trial divisor, and the

first significant figure in the quotient will be the second significant

of the root. Thus starting from the old equation (1), whose root

we know to be about 1,

a b c R (Root
1 +0 -7 +7 (1-3

1 1 - 6

1-6 1 First dividend.
1 2

2 - 4 First trial divisor.

1

3

8. Proceed exactly as before for the second trial divisor, using
the second digit of the root, viz., -3.

9. Proceed as before for the second dividend. We finally ob-

tain the result shown in the next scheme. Note that the black

figures in the preceding scheme are the coefficients of the second

of the equations reduced on the supposition that x = 1-3 is a root

of the equation.
a' b' c' R' (Root.13 - 4 1 (1-35

0-3 0-99 - 0-903

3-3 - 3-01 0-097 Second dividend.
0-3 1-08

3-6 - 1-93 Second trial divisor.

0-3

3-9
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b"

3-9

0-05
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The steps mark the end of each transformation. The digits in block

letters are the coefficients of the successive equations.

(2) There is a positive root between 4 and 5 in Xs + x* + x - 100. Ansr.

4-2644 . . .

(3) Find the positive and negative roots in

x* + So-2 + 16o- = 440.

Ansr. + 3-976 . . .,
- 4-3504 . . .

When finding negative roots, proceed as before, but first transform the equa-

tion into one with an opposite sign by changing the sign of the absolute term.

(4) Show that the root between - 3 and - 4, in equation (1), is 3-0489173396

Work from a = l, 6 = -
0, c = -

7, R = - 7.

162. van der Waals' Equation of State.

The relations between the roots of equations, discussed in this

chapter, are interesting in many ways ;
for the sake of illustration,

let us take van der Waals' equation of state for a gas at a distance

from its point of liquefaction,

-*) = **. . . . (1)

or, expanded, v* -
(b + V + -t? - = 0. (2)

p) p p
This equation of the third degree in v, must have three roots,

<x, ft, y, equal or unequal, real or imaginary. In any case,

(V
-

a)(v
-

fi(v
-

y)
= Q. . (3)

Imaginary roots have no physical meaning ;
we may therefore

confine our attention to the real roots. Of these, we have seen

that there must be one, and there may be three. This means
that there may be one or three (different) volumes, corresponding
to every value of the pressure j9 and temperature 6. There are three

interesting cases :

Case i. There is only one real root present. This implies that

there is one definite volume (v) corresponding to every assigned
value of pressure (p) and temperature (0). This is realised in the

pv-GurvGj for all gases under certain physical conditions ;
for in-

stance, the graph for carbon dioxide at 48-1 (Fig. 125), has only
one value of p corresponding to each value of v.

The collection of curves shown in Fig. 125, were obtained by

plotting values, of p and v corresponding to different values of 6,

a and b. In the diagram, the degrees are on the centigrade scale.

In reality,
= (273 + degrees centigrade).
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Case ii. T/iere arc three real unequal roots present. For tem-

peratures below 32*5, say 13 '1, we get the wavy curve ABCD
(Fig. 125). This means that at 13 '1, and at a pressure of Op ,

carbon dioxide ought to have

three different volumes corre-

sponding with the abscissae

Oy, Oft, Oa. Only two of

these three volumes have yet

been observed, namely for

gaseous C02
at a and for liquid

CO., at y, the third, correspond-

ing to the point (3,
is unknown.

The curve AyfiaD, has been

realised experimentally by
Andrews.

When the volume of a

mass of carbon dioxide gas is

gradually diminished, the cor-

responding changes of pressure

and volume are represented

graphically by the curve Da.

At the point a, the gas begins

to condense
; continuing the lessening of the volume, the pressure

remains constant, until the point y is reached. Here, all the

carbon dioxide will have assumed the liquid state. The straight

line ya thus represents the constant pressure exerted by the vapour
of carbon dioxide in contact with its liquid.

The steep curve Ay indicates that there is only a slight change
in the volume of the liquid for great increments of pressure. See

13.

The abscissa of the point a represents the volume of a given
mass of gaseous carbon dioxide, the abscissa of the point y

represents the volume occupied by the same mass of liquid carbon

dioxide at the same pressure.

Under special conditions, parts of the sinuous curve yBftCa
have been realised experimentally, namely, yx and ay. These

latter represent unstable conditions of supersaturation. The por-

tion yx shows that a liquid may exist at a pressure less than that

of its own vapour, and ay shows that a vapour may exist at a pres-

sure higher than that of its
"
vapour pressure

"
of its own liquid.

FIG. 125. Isothermals of Carbon
Dioxide.
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Case iii. There are three real equal roots present. At and above

the point where a = ft
=

y, there can only be one value of v for any

assigned value of p. This point is no other than the well-known

critical point of a gas. Write pc ,
vc , C ,

for the critical pressure,

volume and temperature of a gas. From (3),

(v
-

a)*
= 0, . . . (4)

and at the critical point a = v = vc , therefore,

-R0A a ab
+

P./
+

?>c

V ~

Yc
=

This equation is an identity, therefore (footnote, page 172),

3vcpc
= bpc + R6C ;

3v2
cpc

= a
;
v*cpc

= ab, . (6)

are obtained by equating the coefficients of like powers of the

unknown v.

From the last two of equations (6),

ve
= 3b. ... . (7)

From (7) and the second of equations (6),

P--W& <8>

From (7), (8), and the first of equations (6),

From these results, (7), (8), (9), van der Waals has calculated the

values of the constants a and b for different gases.

Let TT = p/pc , <fr
= v/vc ,

0' = 0/0* From (1), (7), (8) and (9),

(TT + 3/<
2
) (30

-
1)
= SO', . . . (10)

which appears to be van der Waals' equation freed from arbitrary

constants. This result has led van der Waals to the belief that

all substances can exist in states or conditions where the corre-

sponding pressures, volumes and temperatures are equivalent.

These he calls corresponding states
(

tf Uebereinstimmende Zu-

stande "). The deduction has only been verified in the case of

ether, sulphur dioxide and some of the benzene halides.

It is an interesting exercise to apply the methods of Chapter III. to the

"singular points" of the curves shown in Fig. 125. For convenience, put

RB = constant, say c. Solve (1) for p,

p = c/(v
-

b)
-

a/y
2

(11)

Differentiate twice,

dp _ c 2a d?p 2c 6a

dv~~ (v
-

6)
2 + v3 ' dv*

~
(v

-
ft)

3
~

v4
*

Now read over 55 to 60. It is not difficult to see that if the tempera-
ture 6 is high enough, dpjdv is always negative, that is to say, the curve, or
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rather its tangent, will slope from left to right like the hyperbola 48-1 (Fig.

125). If v is small enough, so that v - b approaches zero, the curve will have

a negative slope like the left sides of the curves 32-5 to 19-1 (Fig. 125), because

dpjdv will still remain negative.

When dpjdv becomes zero, we may have either

(a) a point of inflection shown in curve 32*5 (Fig. 125) ;
or

(6) maximum and minimum values indicated by the dotted lines in

the 19-1 curve.

When 6 is small enough we may have, for certain values of v, a positive

value for dp/dv. This can only correspond to the slope of the dotted portion

BC of the curve 19-1 (Fig. 125).

Now'rearrange the first of equations (12), so that

..... (13)

When v = 6, (v
-

6)
2
/u

3 =
; when v = 36, this expression reaches a

maximum and gradually diminishes to zero as v approaches oo. If c is

greater than 8a/276, c, or what is the same thing, R0, is greater than the

maximum of 2a(v
-

6)
2
/tr

3
, therefore, as v increases p decreases. When c is

less than 8a/276, p decreases for small and large values of v
; p only increases

in the neighbourhood of v = 36. The expression has thus a maximum or a

minimum value for any value of v which makes 2a(v -
b)

2
/v

3 = R0.

Equating the second differential coefficient, in (12), to zero, we get

_ = a ^

c c c c

The roots of this biquadratic in v, correspond with the points of inflection or

transition points of the curve. Of these, there may be four, two, or none.

Now try and plot van der Waals' equation for any gas from the published
values of a, 6, R. For example, for ethylene a = 0*00786, 6 = 0-0024, R = 0-0037 ;

for carbon dioxide

p +
'00874

\(t;
-

0-0023) = 0-00369(273 + ,),
. . (15)

where 6
l
denotes degrees of temperature on the centigrade scale. Hint. First

fix the value for
1} say, 0C., and calculate a set of corresponding values of p

and v, thus,

v = 0-1, 0-05, 0-025, 0-01, 0-0075, 0-005, 0-004, 0-003, . . .
;

p = 9-4, 19-7, 30-3, 43-3, 37-9, 23-2, 45-8, 466-8, . . .

Make the successive increments in v small when in the neighbourhood of a

singular point. Plot these numbers on squared paper. Note the points of

inflection. Now do the same thing with e
l
= 30 C., and

:
= 50 C. In this

way you will get a better insight into the " inwardness "
of van der Waals'

equation than if pages of descriptive matter were appended. Notice that the

/w
2 term has no appreciable influence on the value of p when v becomes very

great, and also that the difference between v and v - b is negligibly small, as

r becomes very large. What does this signify ? When the gas is rarefied, it

will follow Boyle's law pv = constant. What would be the state of the gas
when v = 0-0023 ?

See Hilton, Phil. Mag. [6], 1, 579 ;
ib.

t 2, 108, 1901.

CC
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CHAPTEE X.

DETERMINANTS.

THIS chapter is for the purpose of explaining and illustrating a

system of notation which is in common use in the different branches

of pure and applied mathematics.

163. Simultaneous Equations.

(i.) Homogeneous simultaneous equations in two unknowns. The

homogeneous equations,

a^x + % =
;
a

2
x + b

2y = 0, . (1)

represent two straight lines passing through the origin. In this

case
( 28), x = and y = 0, a deduction verified by solving for

x and y. Multiply the first of equations (1) by b
2 ,
and the second

by br Subtract. Or, multiply the second of equations (1) by a
lt

and the first by a.2 . Subtract. In each case, we obtain,

x(aJ2
- o^) =

; y(a2
b
l
- aJJ = 0. . . (2)

Hence, x =
; and y =

;

or, a-J}2
-

ajb^^
=

;
and ajb-^

- a
l
b
2
= 0. . . (3)

The relations in equations (3) may be written,

;
and I a

2 ,
b
2

1 = 0, . (4)

a
2 ,

b
2

a
lt

where the left-hand side of each expression is called a determinant.

This is nothing more than another way of writing down the differ-

ence of the diagonal products.*

The products a^b^, a26x ,
are called the elements of the determinant ;

!, &J, a2 ,
62 , are the constituents of the determinant. Commas may or may

not be inserted between the constituents of the horizontal rows. When only
two elements are involved, the determinant is said to be of the second order.

* In literal equations, the letters should always be taken in cyclic order so that

b follows a, c follows b, a follows c. In the same way 2 follows 1, 3 follows 2, and

1 follows 3.
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From the above equations, it follows that only when the de-

terminant of the coefficients of two homogeneous equations in x and

y is equal to zero can x and y possess values differing from zero.

(ii.)
Linear and homogeneous equations in three unknowns.

Solving the linear equations

a^x + b$ + c
l
=

; a,
2
x + b.

2y + c.
2
= 0, . . (5)

for x and ?/, we get

=
aA - *A"

If a^ - b^ = 0, x and y become infinite. In this case, the two

lines represented by equations (5) are either parallel or coincident.

When x = bl l

o
^ = oo ; y =

^ifi^Ml
= 00f the lines in-

tersect at an infinite distance away. Reduce equations (5) to the

tangent form
( 30),

a, c
l a.2 c.7

ni _ _int _i ni _ _&rp _^ *~

b?
~

b,
' y - -

b*
-

b.
2

'

but since a^ - b^ = 0, a
lfb l

= a.
2/b>2

= the tangent of the angle

of inclination of the lines ;
in other words, two lines having the

same slope towards the #-axis are parallel to each other.*

When the two lines cross each other, the values of x and y in

(6) satisfy equations (5). Make the substitution required.

a
i(
b

i
c
2
~ b

-2
c
i) + b

}(
c
i
a

-2

~ c
-2
a
i) + G

i(
aA ~ aA) = 0,

a
-2(
b

l
C

>2

- b
'2
C
l) + b

-2(
C
i
a
2
~ C

2
a

i) + C
2(
aA ~ aA) =

>

or, writing x = X/Z and y = Y/Z, ... (8)

we get a pair of homogeneous equations in X, Y, Z, namely,

a^X + b^Y + c^Z =
; a.2X + b.

2
Y +c.2Z = 0. . (9)

Equate coefficients of like powers of the variables in these identical

equations.
.-. a

l
:b

l
:c

l
= a.

2
:b.

2
:c

2 ,

or, from (8) and (6),

X: Y: Z = ^c.2
- b.

2
c

l
: c^a*

- c
2
a

x
: a^ - a.

2
bv

=
I
b

i
c

i I
:

I
c

i
a

i \

\

a
i

b
i

\b2
c
2 \ |c2

a
2 \ \a2

b
2

The three determinants on the right, are symbolised by

* Thus the definition,
"

parallel lines meet at infinity," means that as the point

of intersection of two lines goes further and further away, the lines become more and

more nearly parallel.
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where the number of columns is greater than the number of rows.*

The determinant (11), is called a matrix. It is evaluated, by

taking the difference of the diagonal products of any two columns.

The results obtained in (10) are employed in solving linear

equations.

EXAMPLES. (1) Solve 4* + 5y = 7 ;
3x - Hty = 19.

X: Y:Z = \ 5,
- 71:1- 7, 41:14, 51;

1-10, - 19
I 1-19, 3 | I 3,

- 10
|

= - 165 : 55 :
- 55 ;

or x = + 3 and y = - 1.

(2) Solve 20x - I9y = 23
;
19x - 20y = 16. Ansr. x = 4, y = 3.

(3) Solve the observation equations :

5x -
-2y = -4

;
'14i + -Sy = 1-18. Ansr. x = 2, y = 3.

(4) Solve \x - \y = 6 ; $x - \y = - 1. Ansr. x = 24, y = 18.

The condition that three straight lines represented by the

equations

a^x + \y + Cj
=

;
a
2
x + b

2y + c.
2
=

; a.jc + b
sy + c

3
= 0, (12)

may meet in a point, is that the roots of any two of the three

lines may satisfy the third
( 32). In this case we get a set of

simultaneous equations in X, Y, Z.

a
1X+b 1

Y+ c
l
Z = a

2
X + b.

2Y+c2
Z = a

3X+bsY + c
2
Z = Q, (13)

by writing x = X/Z and y = YjZ in equations (12).

From the last pair,

2 , b.2 I. . (14)

But these values of x and y, also satisfy the first of equations (3),

hence, by substitution,

C
2 1
+ b

i

C
3J

which is more conveniently written

a, b, c, I = 0, . . . . (16)

a
2

b
2

c
2

1

a
3

bs c
3 I

a determinant of the third order.

It follows directly from equations (13), (14), (16), only when
the determinant of the coefficients of three homogeneous equations
in x, y, z, is equal to zero, can x, y, z, possess values differing from
zero.

* It is customary to call the vertical columns, simply
" columns"

;
the horizontal

rows,
" rows".
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From (12), (13), (15), (16), we conclude that three equations

are consistent with each other, only when the. determinant of the

coefficients and absolute term of three linear equations in x, y, z,

<[ual to zero.

This determinant is called the eliminant of the equations.

Instead of taking the last two of equations (12), we might have

substituted the values of x and y derived from any two of these

equations in the third. Thus, in addition to (14), we may have

X'.Y-.Z = 6
3

c
3
|:|c

3 a,\Aa, 6
3

b
i

ci\ \
c
i
ai\ \

a
i

b
i

b
i

c
i\\

c
i
a
i\'-\

a
i

b
i

b
-2

C2\ \
C
2

a
2 I I

a
2

b
2

Each of these sets may be obtained from (16), by deleting certain

rows and columns, for instance, I 6
3

c
3

1 is obtained by omitting

K M
the row and column containing a.

2 ,
and so on. Each determinant

in (14) and (17), is called a subdeterminant, or minor of (16).

164. The Expansion of Determinants.

It follows from (15) and (16), that

(17)

a.
2

b.
2

c
2

\

3
b
S

C3\

A determinant is expanded, by taking the product of one letter

in each horizontal row with one letter from each of the other rows.

The first element, called the leading element, is the product of

the diagonal constituents from the top left-hand corner, i.e., a^c.^ ;

its sign is taken as positive. The signs of the other five terms,*

are obtained by arranging alphabetically, and observing whether

they can be obtained from the leading element by an odd or an

even number of changes in the subscripts ;
if the former, the

element is negative, if the latter, positive. For example, 2
^

1
c
3 ,

is obtained by one interchange of the subscripts 2 and 1 in the

leading element
; 2^ic3 ^s

> therefore, a negative element ; a.^b^Cj^

requires two such transformations, 2 and 1, and 2 and 3, hence

its sign is positive.

* The number of constituents in a determinant of the second order is 2 x 1, or 2 !
;

of the third order 3 x 2 x 1, or 3 !, of the fourth order, 4
!, etc.
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1 + 12-8-4-6 = 4.

S 165.

EXAMPLES. (1) Show 12 2 21 = 2

J3
1 1 I

I
! 2 1

I

(2) Show 10 b c I = 2abc.

\b

|

(l
I

(3) Expand j
a

lt b^ Cj, d^ I into twenty-four terms, twelve negative, twelve

positive.

165. The Solution of Simultaneous Equations.

Continuing the discussion in 162, let the equations

a^x + b$ + c-^z
=

d^ ;
a
2
x + b

2y + c
2
z = d.2 ;

a
zx + b

By + c%z
=

d%, (18)

be multiplied by suitable quantities, so that y and z may be elimi-

nated. Thus multiply the first equation by A^ the second by A 2 ,

the third by A z ,
where A^ A.2 ,

A
s ,

are so chosen that

b^ + b.
2
A

2 + b.
3
A

3
=

;
c
l
A

1 + c
2
A

2 + c
3
A

3
= 0. (19)

Hence, by substitution,

x(a1
A

l + a
2
A

2 + a
s
A

3)
= d

1
A

l + d
2
A

2 + d
z
A

3
. . (20)

Equations (19) being homogeneous in A
lt
A

2 ,
A

3 ,
we get, from (10),

A
1

: A
2

: A.
3
= I b.

2
b

, b,

Substituting these values of A
lt
A

2 ,
A

3 ,
in equations (20), we get,

as in equations (14), (15), (16),

x
I
a

i
b

i
ci\

=
(21)
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(4) Solve the observation equations :

-Sx + -2y + '5z = 8-2 ; -2x + "3y + -

Ansr. x = 2, y = 3, z = 4.

= 3'7.

166. Elimination.

It is required to eliminate the unknown from the two equations,

a#? + a^c
2 + a^x + a =

;
b.
2
x'2 + b^x + b

(}

= 0. (23)

Multiply the first equation by x, the second by x and by x1

successively. We thus get the five equations,

+ a.
3
x? + a

2x
2 + a^ + a =

0,^1

a^ + a.jX
2 + a-^x

2 + a^x -f = 0,

+ + b
2
x2 + b^ + b

(>

= 0, J-.

+ b.
2
x? + b.x

2
b.x

2 + b x + = 0,

b#? +
'

+ = 0,J

(24)

As on page 405, if these five equations are consistent, the eliminant

of the four unknowns, is

(25)"

6 k b

a,

bn

EXAMPLES. (1) Show that the following equations are consistent with

one another,

x + y - z =
;
x - y + z = "2; y + z - x = 4

;
x + y + z = 6,11-10

1-112
-11141116

(2) Eliminate x and y from the equations

Divide the first by y", the second by y-. Multiply the first by x/y, the second

by xfy and x2
jy~. The eliminant of the resulting five equations ,

is

2-5 0-9
2-5 0-9

3-7-6
3-7-6

3 _7 _6

167. Fundamental Properties of Determinants.

1. The value of a determinant is not altered by charujiny the

columns into rows, or the rows into columns.
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It follows directly, by simple expansion, that

andK
&i|

=
|i

4 1; (26)

2 C2 I 0, 2 3

, 63 cj |c :
c2 c3

It follows as a corollary, that whatever law is true for the rows of a

determinant, is also true for the columns and conversely.

2. The sign, not the numerical value, of a determinant is altered

by interchanging any two rows, or any two columns.

By direct calculation,

b
i

c
i I
= ~

I
6
i i c

x I. . (27)

3. If two rows or two columns of a determinant are identical,

the determinant is equal to zero.

If two identical rows or columns are interchanged the sign, not the value

of the determinant, is altered. This is only possible if the determinant is

equal to zero. The same thing can be proved by the expansion of, say,

a3 as c5

4. When the constituents of two roivs or two columns differ by a

constant factor, the determinant is equal to zero.

Thus by expansion show that

415
826
12 3 7

= 4 1 1 51 = 4x0 = 0.

2261
3371

(28)

5. If a determinant has a row or column of cyphers it is equal
to zero.

This is illustrated by expansion,

10 6
X Cl

62 c

(29)

6. In order to multiply a determinant by any factor, multiply
each constituent in one row or in one column by this factor.

This is illustrated by the expansion of the following :

mas b, cs |

(30)

7. In order to divide a determinant by any factor, divide each

constituent in one row or in one column by that factor.
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This follows directly from the preceding proposition. It is conveniently
used in the reduction of determinants to simpler forms. Thus,

6 9 81 = 9.6.211 1 41 = 9.6.2.211 1 21. . . (31)

12 18 4 I I 2 2 2 I I 1 1 1 I

24 27 2
I I

4 3 1
I |

4 3 1 1

8. If the sign of every constituent in a row or column is changed,

the sign of the determinant is changed.

9. One row or column of any determinant can be reduced to

unity (Dos tor's theorem).

This will need no more explanation than the following illustration :

3 4 61 = 12

288
679

111
132
876

(33)

10. If each constituent of a row or column can be expressed as

the sum or difference of two or more terms, the determinant can be

expressed as the sum or difference of two other determinants.

This can be proved by expanding each of the following determinants, and

rearranging the letters.

lal p, b
lt ^1 = 10, b, c^lp b, Cl L . (34)

In general, if each constituent of a row or column consists of n terms, the

determinant can be expressed as the sum of n determinants.

EXAMPLE. Show by this theorem, that

16

+ c, a -
6, a I = 3abc - a3 - 63 - c".

c + a, b -
c, b\

a + b, c -
a, c\

11. The value of a determinant is not changed by adding to or

subtracting the constituents of any row from the corresponding

constituents of one or more of the other rows or columns.

Thus from 10 and 3,

i t
2

(35)

which proves the rule, because the determinant on the right vanishes. This

result is employed in simplifying determinants.

EXAMPLES. (1) Show
1 1, x

t y + z I = 0.

1, y, z + *\

1, z, x + y I
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Add the second column to the last and divide the last column by x + y + z.

The determinant vanishes (3).

(2) Show
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Since the value of a determinant is not altered by writing the

columns in rows and the rows in columns, the product of two

determinants may be written in several equivalent forms which all

give the same result on expansion. Thus, instead of the right

side of (38), we may have

-f b.
2e., b^ + b.,d.2 , b^ + b.

2
e
2

EXAMPLES. (1) Multiply I a
l

b
l

c
1

1 and

l2 bi C2\

\<h bs CJ J e3 fz

The answer may be written in several different forms ; one form is

I

Mi + Vi'+ ci/i. M2 + V2 + ci/2 > Ms + Vs + ci/s

Ml + Vl + C2/l. 2^2 + &^2 + C2/2' M3 + V3 + C2/3

Ml + Vl + C3/l 3rf2 + V2 + C3/2. 5^3 + V3 + C3/3

This can be verified by the laborious operation of expansion. There are

twenty-seven determinants all but six of which vanish.

(2) K b,
2 = I a\ + b\, a^+b

When two constituents of a determinant hold the same relative position

with respect to the rows and columns, they are said to be conjugate. Thus

in the last of the determinants in (34) 6
X
and q are conjugate, so are 63 and c2 ,

r and Cj. If the conjugate elements are equal, the determinant is symmetrical,
if equal but opposite in sign, we have a skew determinant. The square of a

determinant is a symmetrical determinant.

169. The Differentiation of Determinants.

Suppose that the constituents of a determinant are independent
and that

D =

then, d(D) =
x^dy., + yjlx^

- x.
2dy l

-

= (yJXi
-
y^dx^ + (x^y^

- xdy^ ;

= I dx
1 y l

I + I xl dy l
I. . . (39)

I ^2 y-2 1 I
x

-2 dy* I

If the constituents of the determinant are functions of an in-

dependent variable, say t, then, writing ^ for dx/dt, y,2 for dy2/dt

and so on, it can be proved, in the same way,

D = \ Xl yi \, d(D)/dt = I ^ y, I -f I ^ y, I. . (40)

I
*

2 2/2! Us 2/2
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EXAMPLES. (1) Show that if D = I x
l yl

a
l \;

170,

d(D)

d(D)/dt =

dx
1

*2 2/2

\
X3 2/3

x
l dyl + I x

l yl
dz

l

\x2 7/2 dz2

Ns 2/3 dz
3

x
l

2/2

(2) If a
lt

62 ,
c
lt
a2 ,

62 ,
. . ., are constants, show that

c
i
z

I + >
e^c -> dx

a2x b2y c%z a2dx

etc.

170. Jacobians and Hessians.

1. Definitions. If u, v, w, be functions of the independent

variables, x, y, z, the determinant

. . . . (41)

is called a Jacobian and is variously written,

(. *, ) .

or or J
> (42)

when there can be no doubt as to the variables under consideration.

In the special case, where the functions u, v, w are themselves

differential coefficients of the one function, say u, with respect to

x, y and z, the determinant

. . . (43)

is called a Hessian of u and written H(u), or simply H. The

Hessian, be it observed, is a symmetrical determinant whose

constituents are the second differential coefficients of u with

respect to x, y, z. In other words, the Hessian of the primitive

function u, is the Jacobian of the first differential coefficients of u,

or in the notation of (42),
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H() = <)#' DV' &*/
. (44)

2. Jacobians and Hessians of interdependent functions. If

u =
f(v),

Eliminate the function f(v) as described on page 340.

or, (45)

That is to say, if u is a function of v, the Jacobian of the functions

of u and v with respect to x and y will be zero.

The converse of this proposition is also true. If the relation (45)

holds good, u will be a function of v.

In the same way, it can be shown that only when the Hessian

of u is equal to zero, are the first derivatives of u with respect to x

and y independent of each other.

3. The Jacobian of a function of a function. If uv u
2 , are

functions of x
l
and x.

2 ,
and x

l
and x

2
are functions of yl

and y.2 ,

By the rule for the multiplication of determinants,

(46)

or,

This bears a close formal analogy with the well-known

4. The Jacobian of implicit
*

functions. If u and v, instead of

* A function is said to be explicit when it can be expressed directly in terms of

the variable or variables, e.g., z is an explicit function of x in the expression : 2 = .c- ;

z + a = bz*. A function is implicit when it cannot be so expressed in terms of the

independent variable. Thus .f
2 + 2xy = y

z
;
x + y = z*, are implicit functions.
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being explicitly connected with the independent variables x and y,

are so related that

P =
fi(x * y,u,v) = Q; q = f2(x, y, u, v)

= 0,

u and v may be regarded as implicit functions of x and y. By
differentiation

^N
* ^ i ^ ^ "

> < ~r < ^ T ^
to

0;

to u(7 U f\ :L ~L
v tv Q Ou >-w

^v ^x
'

to ^u ^y ^v ^x

and by the rule for the multiplication of determinants,

x

to

to to

to ~dv

Or,
>,<?)

(47)

_

D(u, v)

'

?>(x, y) ^(x, y)'

A result which may be extended to include any number of inde-

pendent relations.

171. Some Thermodynamic Relations.

Determinants, Jacobians and Hessians are continually appearing in

different branches of applied mathematics.

The following summarises a paper by J. E. Trevor in the Journal of

Physical Cliemistry (3, 523, 573, 1899). The results will serve as a simple
exercise on the mathematical methods of some of the earlier sections of this

work. The reader should find no difficulty in assigning a meaning to most

of the coefficients considered.

If U denotes the internal energy, < the entropy, p the pressure, v the

volume, 6 the absolute temperature, Q the quantity of heat in a system of

constant mass and composition, the two laws of thermodynamics state that

dQ = dU + p . dv; dQ =
6d<t> (1)

To find a value for each of the partial derivatives

dv

"dv*dv\ C&v\ /cH

i \dpjj (
in terms of the derivatives of U.

Case i. When v or
<f>

is constant. From (1),

-p = 'dUI'dv ; and = 3 7/30

First, differentiate each of the expressions (2), with respect to

volume

(2)

at constant
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By division, -(**}- ttillsS (4)

Next, differentiate each of equations (2) with respect to v at constant entropy.

By division, ~
( )

=^ gSc (6)

Case ii. When either p or 6 is constant. We know that

'dv 3<p 'dv 9</>

First, when p is constant, eliminate dv or d<f> between equations (7). Hence

show that

where J denotes the Jacobian c)(p, 0)/B(v, </>).
If H denotes the Hessian of E7,

show that

\dfjp "WU' \d6Jp~ H '

\de)P H '

Finally, if is constant, show that

w ; \^)r "r- ;
-
\^)r
~

See also Baynes' Tliermodynamics (Oxford, 1878), pp. 95 et seq.
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CHAPTEE XI.

PROBABILITY AND THE THEORY OF ERRORS.

172. Probability.

" Perfect knowledge alone can give certainty, and in Nature perfect

knowledge would be infinite knowledge, which is clearly beyond
our capacities. We have, therefore, to content ourselves with

partial knowledge knowledge mingled with ignorance, producing
doubt." W. STANLEY JEVONS.

"
Lorsqu'il n'est pas en notre pouvoir de discerner les plus vraies

opinions, nous devons suivre les plus probables."
* RENE

DESCARTES.

NEARLY every inference we make with respect to any future event

is more or less doubtful. If the circumstances are favourable, a

forecast may be made with a greater degree of confidence than

if the conditions are not so disposed. A prediction made in ignor-

ance of the determining conditions is obviously less trustworthy
than one based upon a more extensive knowledge. If a sports-

man missed his bird moYe frequently than he hit, we could safely

infer that in any future shot he would be more likely to miss than

to hit. In the absence of any conventional standard of compari-

son, we could convey no idea of the degree of the correctness of

our judgment. The theory of probability seeks to determine the

amount of reason which we may have to expect any event when

we have not sufficient data to determine with certainty whether it

will occur or not and when the data will admit of the application

of mathematical methods.

A great many practical people imagine that the "doctrine of

probability
"

is too conjectural and indeterminate to be worthy of

* Translated :

" When it is not in our power to determine what is true, we ought

to act according to what is most probable ".
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serious study. Liagre* very rightly believes that this is due to

the connotation of the word "
probability". The term is so vague

that it has undermined, so to speak, that confidence which we

usually repose in the deductions of mathematics. So great, indeed,

has been the dominion of this word over the mind that all applica-

tions of this branch of mathematics are thought to be affected with

the unpardonable sin want of reality. Change the title and the

"theory" would not take long to cast off its conjectural character,

and to take rank among the most interesting and useful applications

of mathematics.

Laplace remarks at the close of his Essai philosophique sur les

Probabilites (Paris, 1812),
" the theory of probabilities is nothing

more than common-sense
(
reduced to calculation. It determines

with exactness what a well-balanced mind perceives by a kind

of instinct, without being aware of the process. By its means

nothing is left to chance either in the forming of an opinion,

or in the recognising of the most advantageous view to select

whenever the occasion should arise. It is, therefore, a most

valuable supplement to the ignorance and frailty of the human
mind. ..."

1. If one of two possible events occurs in such a way that one of

the events must occur in a ways, the other in b ways, the probability

that the first will happen is a/(a + b), and the probability that the

second will happen is b/(a + b).

If a rifleman hits the centre of a target about once every twelve shots

under fixed conditions of light, wind, quality of powder, etc., we could say

that the value of his chance of scoring a "
bullseye

"
in any future shot is 1 in

12, or TV, and of missing, 11 in 12, or f. If a more skilful shooter hits the

centre about five times every twelve shots, his chance of success in any future

shot would be 5 in 12, or T\, and of missing T
7
7 .

Putting this idea into more general language, if an event can happen in

a ways and fail in 6 ways,
the probability of the event happening = a/(a + b) ;} ,.

the probability of the event failing = b/(a + 6),J
'

provided that each of these ways is just as likely to happen as to fail. By
definition,

Number of ways the event occurs
Jrrobability = . r2\

Number of possible ways the event may happen

*
Liagre 's Calcul des Probabilites (C. Muquardt, Bruxelles, 1879).

f Literally
" bons sens

" = good sense.

DD
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2. If p denotes the probability that an event will happen, 1 - p
denotes the probability that the event will fail.

The shooter at the target is certain either to hit or to miss. In mathe-

matics, unity is supposed to represent certainty, therefore,

Probability of hitting + Probability of missing = Certainty = 1. (3)

If the event is certain not to happen the probability of its occurrence is zero.

Certainty is the unit of probability. Degrees of probability are fractions of

certainty.

Of course the above terms imply no quality of the event in itself, but

simply the attitude of the computer's own mind with respect to the occurrence

of a doubtful event. We call an event impossible when we cannot think of a

single cause in favour of its occurrence, and certain when we cannot think of

a single cause antagonistic to its occurrence. All the different " shades "
of

probability improbable, doubtful, probable lie between these extreme limits.

Strictly speaking there is no such thing as chance in Nature. The irre-

gular path described by a mote "dancing in a beam of sunlight" is determined

as certainly as the orbit of a planet in the heavens. The terms "chance" and
"
probability

"
are nothing but conventional modes of expressing our ignor-

ance of the causes of events as indicated by our inability to predict the results.
" Pour une intelligence (omniscient)," says Liagre,

" tout evenement a venir

serait certain ou impossible.'
1 ''

3. The probability that both of two independent events will

happen together is the product of their separate probabilities.

Let p denote the probability that one event will happen, q the probability
that another event will happen, the probability that both events will happen
together is

pg. (*)

This may be illustrated in the following manner: A vessel A contains

a
x
white balls, b^ black balls, and a vessel B contains a? white balls and i2

black balls, the probability of drawing a white ball from A is pl
= Oil(a l + bj,

and from JB, pz
= a2/(a2 + 62). The total number of pairs of balls that can be

formed from the total number of balls is (oj + 6
a ) (a2 + &2). In any simul-

taneous drawing from each vessel, the probability that

two white balls will occur is : a
1
a2/(al + bj (a2 + 62) ;

. . . (5)

two black balls will occur is : b
l
b.2j(al + bj (az + 62) ;

. . . (6)

white ball drawn first, black ball next, is : 0^(0^ + bj (a^ + 62) ; . (7)

black ball drawn first, white ball next, is : a261/(c1 + 6,) (04 + 62)
"

(
8

)

black and white ball occur together, is : (ajb9 + 6
1
o2)/(o1 + 6

X) (a,, + 62). (9)

The sum of (5), (6), (9) is unity. This condition is required by the above

definition.

An event of this kind, produced by the composition of several events, is

said to be a compound event. To throw three aces with three dice at one trial

is a compound event dependent on the concurrence of three simple events.
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Errors of observation are compound events produced by the concurrence of

several independent errors.

EXAMPLE. If the respective probabilities of the occurrence of each of n

independent errors is P,, P2 ,
. . ., Pw , the probability of the occurrence of all

together is P
a
P2 . . . P.

4. The probability of the occurrence of several events ivhich

cannot occur together is the sum of the probabilities of their

separate occurrences.

If p, q, . . . denote the separate probabilities of different events, the

probability that one of the events will happen is,

= P + q +........ (10)

EXAMPLE. A bag contains 12 balls two of which are white, four black,

six red, what is the probability that the first ball drawn will be a white,

black, or a red one ? The probability that the ball will be white is
,
a

black J, etc. The probability that the first ball drawn shall be a black or a

white ball is .

5. If p denotes the probability that an event will happen on a

single trial, the probability that it will happen r times in n trials is

The probability that the event will fail on any single trial is 1 - p ; the

probability that it will fail every time is (1
-

p)
n

. The probability that it

will happen on the first trial and fail on the succeeding n - 1 trials is

p(l
-

p)
n - l

. But the event is just as likely to happen on the 2nd, 3rd, . . .

trials as on the first. Hence the probability that the event will happen just

once in the n trials is

np(l - pY
- 1...... (12)

The probability that the event will occur on the first two trials and fail on

the succeeding n - 2 trials is p2
(l

-
p)

n ~ 2
. But the event is as likely to

occur during the 1st and 3rd, 2nd and 4th, . . . trials. Hence the probability

that it will occur just twice during the n trials is

pY- 2..... (13)

The probability that it will occur r times in n trials is, therefore, represented

y formula (11).

6. If p denotes the very small probability that an event will

happen on a single trial, the probability that it will happen r times

in a very great number (n) trials, is

* The student may here find it necessary to read over 191.
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From formula (11), however small p may be, by increasing the number of

trials, we can make the probability that the event will happen at least once

in n trials as great as we please. The probability that the event will fail

every time in n trials is (1
-

p)
n

,
and if p be made small enough and n great

enough, we can make (1
-

p)
n as small as we please.* If n is infinitely great

and p infinitely small, we can write n = n-l = n-2 = . . .

n(n -
1)

(1
-

p)* = 1 - np +
2 , V -

(approx.) ;

= e
~ n? (approx.)...... (15)

(14) follows immediately from (11) and (15). This result is very important.
EXAMPLES. (1) If n grains of wheat are scattered haphazard over a

surface s units of area, show that the probability that a units of area will

contain r grains of wheat is

(an}
r _

~vre "

Thus, n . ds/s represents the infinitely small probability that the small space
ds contains a grain of wheat. If the selected space be a units of area, we

may suppose each ds to be a trial, the number of trials will, therefore, be

a/ds. Hence we must substitute an/s for np in (14) for the desired result.

(2) Using the above notation and reasoning, show that the probability

that an event will occur at least r times in n trials is

pn + npn -lq +
n

(
n
^~

>

pn ~
*g> + . . . + prq

n -
r. . . . (16)

Sometimes a natural process proves far too' complicated to

admit of any simplification by means of "working hypotheses".
The question naturally arises, can the observed sequence of events

be reasonally attributed to the operation of a law of Nature or to

chance ?

For example, it is observed that the average of a large number of. readings
of the barometer is greater at nine in th'e morning than at four in the after-

noon
; Laplace (Theorie analytique des Probability, p. 49, 1820) asked whether

this was to be ascribed to the operation of an unknown law of Nature or to

chance? Again, Kirchhoff (Monatsberichte der Berliner Akademie, Oct., 1859)

inquired if the coincidence between 70 spectral lines in iron vapour and in

sunlight could reasonably be attributed to chance. He found that the prob-

ability of a fortuitous coincidence was approximately as 1 : 1,000000,000000.

Hence, he argued that there can be no reasonable doubt of the existence of iron

in the sun. Michell (Phil. Trans., 57, 243, 1767 ; see also Kleiber, Phil. Mag.

[5], 24, 439, 1887) has endeavoured to calculate if the number of star clusters

is greater than what would be expected if the stars had been distributed

* The reader should test this by substituting small numbers in place of p, and

large ones for n. Use the binomial formula of 98. See the remarks on page 481,
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haphazard over the heavens. Schuster (Proc. Ray. Soc., 31, 337, 1881) has

tried to answer the question, is the number of harmonic relations in the

spectral lines of iron greater than what a chance distribution would give ?

Mallet (Phil. Trans,, 171, 1003, 1880) and Strutt (Phil. Mag. [6], 1, 311, 1901)
have asked, do the atomic weights of the elements approximate as closely to

whole numbers as can reasonably be accounted for by an accidental coinci-

dence? In other words, are there common-sense grounds for believing the

truth of Prout's law, that " the atomic weights of the other elements are exact

multiples of that of hydrogen
"

?

The theory of probability does not pretend to furnish an in-

fallible criterion for the discrimination of an accidental coincidence

from the result of a determining cause. Certain conditions must

be satisfied before any reliance can be placed upon its dictum.

For example, a sufficiently large number of cases must be avail-

able. Moreover, the theory is applied irrespective of any know-

ledge to be derived from other sources which may or may not

furnish corroborative evidence. Thus Kirchhoffs conclusion as to

the probable existence of Fe in the sun was considerably strength-

ened by the apparent relation between the brightness of the

coincident lines in the two spectra.

For details of the calculations, the reader must consult the original

memoirs. Most of the calculations are based upon the analysis in Laplace's
old but standard TJUorie (I.e.). An excellent r6sum& of this latter work will

be found in the Encyclopaedia Metropolitana.

The more fruitful applications of the theory of probability to natural

processes has been in connection with the kinetic theory of gases and the
" law "

relating to errors of observation.

173. Application to the Kinetic Theory of Gases.*

The following illustrations are based, in the first instance, on a

memoir by Clausius (Phil. Mag. [4], 17, 81, 1859). For further

developments, Meyer's The Kinetic Theory of Gases (Longmans,
Green & Co., 1899) may be consulted.

1. To show that the probability that a single molecule, moving
in a swarm of molecules at rest, ivill traverse a distance x without

collision is

P = e-*, . . . (17)

* The purpose of the kinetic theory of gases is to explain the physical properties

ot gases from the hypothesis that a gas consists of a great number of molecules in

rapid motion. I select, here and in 181, a few dfdm-tious which directly refer to

tin- theory of probability.
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where I denotes the probable value of the free path the molecule

can travel without collision, and x/l denotes the ratio of the path

actually traversed to the mean length of the free path. "Free

path
"

is denned as the distance traversed by a molecule between

two successive collisions. The "mean free path" is the average

of a great number of free paths of a molecule.

Consider any molecule moving under these conditions in a given direction.

Let a denote the probability that the molecule will travel a path one unit

long without collision, the probability that the molecule will travel a path
two units long is a . a, or a2

,
and the probability that the molecule will travel

a path x units long without collision is, from (4),

P = a*, ...... (18)

where a is a proper fraction. Its logarithm is therefore negative. (Why ?)

If the molecules of the gas are stationary, the value of a is the same

whatever the direction of motion of the single molecule. From (15), therefore,

P = e
-
*P,

where I = I/log . We can get a clear idea of the meaning of this formula by

comparing it with (15). Supposing the traversing of unit path is reckoned a

"trial," x in (17) then corresponds with n in (15). 1/Z in (17) replaces p in (15).

1/Z, therefore, represents the probability that an event (collision) will happen

during one trial. If I trials are made, a collision is certain to occur. This is

virtually the definition of mean free path.

2. To show that the length of the path which a molecule, moving
amid a swarm of molecules at rest, can traverse without collision is

probably

where A. denotes the mean distance between any two neighbouring

molecules, p the radius of the sphere of action corresponding to the

distance apart of the molecules during a collision, TT is a constant

with its usual signification.

Let unit volume of the gas contain N molecules. Let this volume be

divided into N small cubes each of which, on the average, contains only one

molecule. Let A. denote the length of the edge of one of these little cubes.

Only one molecule is contained in a cube of capacity A3
. The area of a cross

section through the centre of a sphere of radius p, is irp
2

, (12), page 491. If

the moving molecule travels a distance A., the hemispherical anterior surface

of the molecule passes through a cylindrical space of volume 7rp
2
A, (25), page

492. Therefore, the probability that there is a molecule in the cylinder irp-\

is to 1 as irp
2\ is to A3

, that is to say, the probability that the molecule under

consideration will collide with another as it passes over a path of length A.
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is -JT^A : A :!

. The probability that there will be no collision is 1 -
ir^/A

2
.

From (17),

According to the kinetic theory, one fundamental property of gases is

that the intermolecular spaces are very great in comparison with the di-

mensions of the molecules, and, therefore, pV/A'-
4 is very small in comparison

with unity. Hence also \fl is a small magnitude in comparison with unity.

Expand e
~

A/'

according to the exponential theorem (page 230), neglect terms

involving the higher powers of A, and

c
~ A/' = 1 -

\jl...... (21)
From (20) and (21),

A' -&
I = 1 5

or
>
p = e A3 ..... (22)

r*
EXAMPLE. The behaviour of gases under pressure indicates that p is very

much smaller than A. Hence show that "a molecule passes by many other

molecules like itself before it collides with another ". Hint. From the first

of equations (22),
l:\ = A- : p

2
*-.

Interpret the symbols.

3. To show that (19) represents the mean value of the free path

of n molecules moving under the same conditions as the solitary

molecule just considered.

Out of n molecules which travel with the same velocity in the same

direction as the given molecule, ne~*l l will travel the distance x without

collision, and ne
~

(* + <t*)n wjn travel the distance x + do.
1 without collision-

Of the molecules which traverse the path a1

,

K*
_ jr + <^\ _/ _!f5\ n -

e
l -e l \=ne <(l-e

*J
= f

l

dx,

of them will undergo collision in passing over the distance dx. The last

transformation follows directly from (21). The sum of all the paths traversed

by the molecules passing x and x + dx is

Since each molecule must collide somewhere in passing between the limits

x = and x = oo, the sum of all the possible paths traversed by the n molecules

before collision is

and the mean value of these n free paths is

Integrate the indefinite integral as indicated on page 168. Therefore, from (4),

<=

represents the mean free path of these molecules moving with a uniform

velocity.
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EXAMPLES. (1) A molecule moving with a velocity u enters a space filled

with n stationary molecules of a gas per unit volume, what is the probability

that this molecule will collide with one of those at rest in unit time ?

Use the above notation. The molecule travels the space u in unit time.

In doing this, it meets with iriip^u molecules at rest. The probable number
of collisions in unit time is, therefore, irnp

2
u, which represents the probability

of a collision in unit time.

(2) Show that the probable number of collisions made in unit time by a

molecule travelling with a uniform velocity u, in a swarm of N molecules at

rest, is

What is the relation between this and the preceding result ? Note,

Number of Collisions = u/l ;
and N\s 1.

4. The number of collisions made in unit time by a molecule

moving with uniform velocity in a direction which makes an angle

with the direction of motion of a sivarm of molecules also moving
with the same uniform velocity is probably

-p-2%
sin ^0. . . . (24)

We must first determine the relative velocity of the molecules moving in

a direction at an angle Q with the velocity of the molecule under consideration.

One of the elementary propositions of mechanics is the parallelogram of

velocities, which states that "
if two component velocities are represented in

direction and magnitude by two sides of a

parallelogram drawn from a point, the re-

sultant velocity is represented in direction

and magnitude by the diagonal of the

parallelogram drawn from that point ".

The parallelepiped of velocities is an ex-

tension of the preceding result into three

dimensions. " If three component velocities

are represented in direction and magnitude

by the adjacent sides of a parallelepiped .r,

T/, z (Fig. 126), drawn from a point, their

resultant velocity will be represented by
the diagonal of a parallelepiped drawn from

that point." Conversely, if the velocity of the moving system is represented
in magnitude and direction by the diagonal u (Fig. 126) of a parallelepiped,

this can be resolved into three component velocities represented by three sides

x, y, z of the parallelepiped drawn from a point. From 48,

x = u cos 6 ; y = u sin . cos <
;
z = u sin . sin

<f>.
. . (25)

Let the three velocities represented by x, y, z, be respectively denoted by
v

i> % vs an<^ I6 *5 u be represented by v. Hence, from Euclid i., 47,

(26)
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If one set of molecules moves with a uniform velocity whose components

i

relative to a given molecule moving with a uniform velocity whose

components are x, y, z, then the relative component velocities of one molecule

with respect to the other considered at rest, is

V =
(*

- ^)
2

; ,
= (y

- yj* ; *>,
2 =

(*
-

*,).
From (26), _

.-. v = V(x -
*,) + (y

-
y,f + (z

-
,). . . . (27)

If we choose the three coordinate axes so that the x-axis coincides with the

direction of motion of the given molecule, we may substitute these values in

(25), remembering that cosO = 1, sinO = 0,

.-. .r = u; y = 0; z = ..... (28)

Substitute (28) and (25) in (27),

v = \/(u
- u cos 0)

2 + u^irfe . cos2
<j>

u?cos28 +
since sin% + cos2x = 1. Similarly, and for the same reason,

v = u \/2 - 2cos0 = u \/2(l
-

cosd),

from page 500, 1 - cos x = 2(sin z)
2

,

.-. v = 2usin%e...... (29)

Having found the relative velocity of the molecules, it follows directly

from (23) and (29), that

(Number of collisions) =^ = P~%u sin 0.

5. The number of collisions encountered in unit time by a mole-

cule moving in a swarm of molecules moving in all directions, is

l

U
f.

.... (30)

Let u denote the velocity of the molecules, then the different motions

can be resolved into three groups of motions according to the converse of the

parallelepiped of velocities. Proceed as in the last illustration.

The number of molecules (n) moving in a direction between 6 and 6 + dd

is to the total number of molecules (N) in unit volume as

n : N = 2*- sin ede : 47r ; . . . . (31)

or n = ^-ZVsin 6d6.

Since the angle can increase from to 180, the total number of collisions is

To get the total number of collisions, it only remains to integrate for all

directions of motion between and 180. Thus if A denotes the number of

collisions,

A =^ Tain J*. sin *fr;

or, =
/
"sin2^ . cos

*' Jo

_ 4~
3 A'

by the method of integration on page 186.
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EXAMPLE. Find the length of the free path of a molecule moving in a

swarm of molecules moving in all directions, with a velocity u. Ansr.

= tt/4 = fAV (32)

For the hypothesis of uniform velocity see 181.

6. Assuming that two unlike molecules combine during a colli-

sion, the velocity of chemical reaction between two gases is

^ = kNN', .... (33)

where JV and N' are the number of molecules of each of the two

gases respectively contained in unit volume of the mixed gases,

dx denotes the number of molecules which combine in unit volume

in the time dt
;
k is a constant.

Let the two gases be A and B. Let A. and \' respectively denote the

distances between two neighbouring molecules of the same kind, then, as

above,
ATA3 = N'\'* = 1 (34)

Let p be the radius of the sphere of action, and suppose the molecules com-

bine when the sphere of action of the two kinds of molecules approaches
within 2p, it is required to find the rate of combination of the two gases.

The probability that a B molecule will come within the sphere of action of

an A molecule in unit time is uirp
2
l\

s
\ by (23). Among the N' molecules of B,

N'^udt ;
or NN'irp

2
udt, .... (35)

A

by (34), combine in the time dt. But the number of molecules which combine
in the time dt is - dN = - dN', or, from (35),

dN = dN' = - NWvfudt.
If dx represents the number of molecules which combine in unit volume in

the time dt.

dx = dN = dN' = vptiiNN'dt.

Collecting together all the constants under the symbol k,

dx/dt = kNN'.

EXAMPLE. Show the relation between (33) and Wilhelmy's law of mass

action.

J. J. Thomson's memoir, " The Chemical Combination of Gases," PhiL

Mag. [5], 18, 233, 1884, might now be read with profit.

17$. Errors of Observation.

If a number of experienced observers agree to test, indepen-

dently, the accuracy of the mark etched round the neck of a litre

flask with the greatest precision possible, the inevitable result

would be that every measurement would be different. Thus, we

might expect

1-0003; 0-9991; 1-0007; 1-0002; 1-0001; 0-9998;
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Kxactly the same thing would occur if one observer, taking every
known precaution to eliminate error, repeats a measurement a great

number of times. These deviations become more pronounced the

nearer the approach to the limits of accurate measurement. The

discrepancies doubtless arise from various unknown and therefore

uncontrolled sources of error.

The irregular deviations of the measurements from, say, the

arithmetical mean of all are called accidental errors. In the

following discussion we shall call them "errors of observation"

unless otherwise stated.

The simplest as well as the most complex measurements are

invariably accompanied by these fortuitous errors. Absolute

agreement is itself an accidental coincidence. Stanley Jevons

says, "it is one of the mosb embarrassing things we can meet

when experimental results agree too closely ". Such agreement
should at once excite a feeling of distrust.

The observed relations between two variables, therefore, should

not be represented by a point in space, rather by a circle around

whose centre the different observations will be

grouped (Fig. 127). Any particular observation

will find a place somewhere within the circum-

ference of the circle. The diagram (Fig. 127)

suggests our old illustration, a rifleman aiming
at the centre of a target. The rifleman may be

likened to an observer
;

the place where the

bullet hits, to an observation ;
the distance be-

tween the centre and the place where the bullet hits the target

resembles an error of observation. A shot at the centre of the

target is thus an attempt to hit the centre, a scientific measure-

ment is an attempt to hit the true value of the magnitude
measured.

The greater the radius of the circle (Fig. 127), the cruder and

less accurate the measurements
; and, vice versd, the less the mea-

surements are affected by errors of observation, the smaller will

be the radius of the circle. In other words, the less the skill of

the shooter, the larger will be the target required to record his

attempts to hit the centre.
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175. The "Law" of Errors.*

These errors may be represented pictorially another way.

Suppose we had obtained experimental results affected by the

errors shown in the following table:

Positive
Deviations from
Me?n between
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iiuinber of trials we take into consideration. Thus, it is found

that

1. Small errors are more frequent than large ones.

2. Positive errors are as frequent as negative errors.

3. Very large positive or negative errors do not occur.

Any mathematical relation between an error (x) and the frequency,
or rather the probability, of its occurrence (y), must satisfy these

characteristics. When such a function,

y-&*),
is plotted, it must have a maximum ordinate corresponding with

no error
;

it must be symmetrical with respect to the ?/-axis, in

order to satisfy the second condition
;
and as x increases numeri-

cally, y must decrease until, when x becomes very large, y must

become vanishingly small. Such is the curve represented by the

equation,

y-fe-*v,
. . . . (i)

where h and k are constants.* The graph of this equation, called

the probability curve, or curve of frequency, or curve of errors,

is obtained by assigning arbitrary constant values to h and k and

plotting a set of corresponding values of x and y in the usual way.-f

To find a meaning for the constant k, put x = 0, then y = k
t

that is the maximum ordinate of the curve. If we agree to define

an error as the deviation of each measurement from the arith-

metical mean, k corresponds with those measurements which

coincide with the mean itself, or are affected by no error at all.

The height at which the curve cuts the ?/-axis (Fig. 129) represents

the magnitude of the arithmetical mean ;
k has nothing to do with

the actual shape of the curve beyond increasing the length of the

maximum ordinate as the accuracy of the observations increases.

To find a meaning for the constant h, put k = 1, and plot

corresponding values of x and y for x =
J, + 1, +

{!,
+ 2, . . .

when h = 1, J, J, . . . In this way, it will be observed that

although all the curves cut the ?/-axis at the same point, the

greater the value of h, the steeper will be the curve in the

neighbourhood of the central ordinate Oy. The physical signifi-

* Several attempts by Gauss, Hagen, Herschel, Laplace, etc., have been made to

prove this
" law ". Adrain appears to have been the first to deduce the above formula

on theoretical grounds. (1808.)

f Use Table XXIIL, page 519, or \oge~ *2*2 - -
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cation of this is that the greater the magnitude of h, the more

accurate the results and the less will be the magnitude of the

deviation of individual measurements from the arithmetical mean

of the whole set. Hence Gauss calls h the absolute " measure
of precision". If the curves a,

b, c (Fig. 129) retained their pre-

sent shape while transposed to cut

the 2/-axis at the same point, we
should obtain a very good idea of

the effect of h in the above function.

We must now submit our

empirical
" law

"
to the test of

experiment. Bessel has compared
FIG. 129.-Probability Curves. the em)rg of observation in 470

astronomical measurements made by Bradley with those which

should occur according to the law of errors. The results of this

comparison are shown in the following table taken from Encke's

paper in the Berliner Astronomisches Jahrbuch for 1834, p. 249

(Taylor's Scientific Memoirs, 2, 317, 1841) :
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theory. But in every case, the number of large errors actually found is in

excess of theory. To quote one more instance, Newcomb examined 684

rations of the transit of Mercury. According to the "law" of errors,

there should be 5 errors numerically greater than + 27". In reality, 49 sur-

passed these limits.

The theory assumes that the observations are all liable to the same

errors, but differ in the accidental circumstances which give rise to the errors.*

Equation (1) is by no means a perfect representation of the law of errors.

The truth is more complex. The magnitude of the errors seems to depend,
in some curious way, upon the number of observations. In an extended

series of observations the errors may be arranged in groups. Each group has

a different modulus of precision. This means that the modulus of precision

is not constant throughout an extended series of observations.

The probability curve represented by the formula

j-to-w;
may be considered a very fair graphic representation of the law

connecting the probability of the occurrence of an error with its

magnitude.

176. The Probability Integral.

Let XQ ,
xv x.2 ,

. . . x be a series of errors in ascending order

of magnitude from # to x. Let the differences between the

successive values of x be equal. If x is an error, the probability

of committing an error between X
Q
and x is the sum of the separate

probabilities fc~*V, ke~ k^ t
. . ., (4), 172, or

= fcv%-V. . (1)
*o

It' the summation sign is replaced by that of integration, we must

let dx denote the successive intervals between any two limits

x
(}
and x, thus

Now it is certain that all the errors are included between the limits

+ oo, and, since certainty is represented by unity, we have

1 = A
from page 269. Or,

k = h . dx / v TT. .... (3)

* Some observers' results seem more liable to these large errors than others,

<lue, perhaps, to carelessness, or lapses of attention. Thomson and Tait (I.e.), I

presume, would call the abnormally large errors "avoidable mistakes".
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Substituting this value of k in the probability equation (1), pre-

ceding section, we get the same relation expressed in another

form, namely,

h 22

-j
l

*dx, .... (4)

a result which represents the probability of errors of observation

between the magnitudes x and dx. By this is meant the ratio :

Number of errors between x and x + dx

Total number of errors

The symbols y and P are convenient abbreviations for this cumbrous

phrase. For a large number of observations affected with accidental

errors, the probability of an error of observation having a magnitude

x, is,

which is known as Gauss' law of errors. This result has the

same meaning as y = ke~ hZx^ of the preceding section. In (4), dx re-

presents the interval, for any special case, between the successive

values of x. For example, if a substance is weighed to the

thousandth of a gram, dx = O'OOl, if in hundredths, dx = O'Ol,

etc. The probability that there will be no error is

h.dx/Jv; .... (6)

the probability that there will be no error of the magnitude of a

milligram is

O-OOlfc/vC .... <7)

The probability that an error will lie between any two limits

X and x is

The probability that an error will lie between the limits and x is

which expresses the probability that an error will be numerically
less than x. We may also put

X

-^d(hx), . . . (10)

which is another way of writing the probability integral (8). In

(8), the limits are X
Q
and x ; and in (9) and (10), + x.
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EXAMPLE. Find conditions which will make h in Gauss' equation a

maximum. Hence deduce Legendre's principle of least squares : The most

probable value for the observed quantities is that for ivhich the sum of the

*qiuirt"x <>f flic individual errors is a minimum. That is to say,

z2
! + x2

2 + . . . + z2
,,
= a minimum, . . . (11)

where x
l ,

u-2 , . . ., xnj represents the errors respectively affecting the first,

second, and the nth observations.

To illustrate the reasonableness of the principle of least squares, we may
revert to an old regulation of the Belgian army in which the individual scores

of the riflemen were formed by adding up the distances of each man's shots

from the centre of the target. The smallest sum won " le grand prix
"

of the

regiment. It is not difficult to see that this rule is faulty. Suppose that one

shooter scored a 1 and a 3
;
another shooter two 2's. It is obvious that the

latter score shows better shooting than the former.

The shots may deviate in any direction without affecting the score. Con-

sequently, the magnitude of each deviation is proportional, not to the magni-
tude of the straight line drawn from the place where the bullet hits to the

centre of the target, but to the area of the circle described about the centre

of the target with that line as radius. This means that it would be better

to give the grand prize to the score which had a minimum sum of the squares

of the distances of the shots from the centre of the target.* This is nothing
but a graphic representation of the principle of least squares, formula (11).

In this way, the two shooters quoted above would respectively score a 10 and

an 8.

177. The Best Representative Value for a Set of

Observations.

It is practically useless to define an error as the deviation of

any measurement from the true result, because that definition

would imply a knowledge which is the object of investigation.

What then is an error ? Before we can answer this question, we
must determine the most probable value of the quantity measured.

The only available data, as we have just seen, are always as-

sociated with the inevitable errors of observation. The measure-

ments, in consequence, all disagree among themselves within

certain limits. In spite of this fact, the investigator is called

upon to state definitely what he considers to be the most probable
value of the magnitude under investigation. Indeed, every chemical

or physical constant in our textbooks is the best representative value

of a more or less extended series of discordant observations.

For instance, giant attempts have been made to find the exact

* See properties of similar figures, 192.

EE
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length of a column of pure mercury of one square millimetre

cross-sectional area which has a resistance of one ohm at 0C.
The following numbers have been obtained :

106-33 ; 106-31 106-24 ;

106-32 : 106-29 106-21
;

106-32 ; 106-27 106-19,

centimetres (Everett's Illustrations of the C.G.S. System of Units,

p. 176, 1891). There is no doubt that the true value of the re-

quired constant lies somewhere between 106-19 and 106-33 ; but

no reason is apparent why one particular value should be chosen

in preference to another. The physicist, however, must select one

number from the infinite number of possible values between the

limits 106-19 and 106-33 cm.

What is the best representative value of a set of discordant

results? The arithmetical mean naturally suggests itself, and

some mathematicians start from the axiom :

" the arithmetical

mean is the best representative value of a series of discrepant

observations ".

Various attempts, based upon the law of errors, have been made
to show that the arithmetical mean is the best representative value

of a number of observations made under the same conditions and

all equally trustworthy. The proof rests upon the fact that the

positive and negative deviations, being equally probable, will ulti-

mately balance each other as shown in example (1).*

EXAMPLES. (1) If a
lt

a2 ,
. . ., a n are a series of observations, a their

arithmetical mean, show that the algebraic sum of the residual errors is

(! -
a) + ( 2

-
a) + . . . + (an

-
a) = 0. . . . (1)

Hint. By definition of arithmetical mean,

a = a, + a2 + . . . + an .

or> ^ = ^ + ^ + . . . + n .

Distribute the n a's on the right-hand side so as to get (1), etc.

* Hinrichs' The Absolute Atomic Weights of the Chemical Elements, published

while the last proofs were under my hands, criticises the selection (and the selectors)

of the arithmetical mean as the best representative value of a set of discordant obser-

vations. The following exercises were suggested to me after reading pages 1-20 of

that work.

EXAMPLES. (1) What does the arithmetical mean of the weights of a large

number of shillings in current circulation represent?

(2) Point out the fallacy implied in the words: "if we cannot use the arith-

metical mean of a large number of simple weighings of actual shillings as the true

value of a (new) shilling, how dare we assume that the mean value of a few deter-

minations of the atomic weight of a chemical element will give us its true value ?
"
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(2) Prove that the arithmetical mean makes the sum of the squares of

the errors a minimum. Hint. See page 464.

NOTE. When calculating the mean of a number of observations which

agree to a certain number of digits, it is not necessary to perform the whole

of the addition. For example, the mean of the above nine measurements is

written

106 + ('33 + -32 + -32 + -31 + -29 + -27 + -24 + -21 + -19)
= 106-276.

Edgeworth, "The Choice of Means," Phil. Mag., [5], 24, 268, 1887, and

several articles on related subjects are to be found in the same journal between

1883 and 1889.

The best representative value of a constant interval. When the

best representative value of a constant interval x in the expression

y = a + nx (where n is a positive integer 1, 2 . .
.)

is to be de-

termined from a series of measurements x.
2
- xv x

3
- x

2 ,
. . .,

which vary a little from the desired value x, the arithmetical mean

cannot be employed because it reduces to (xn
-

x^l(n
-

1), the

same as if the first and last term alone had been measured. In

such cases it is usual to refer the results to the expression

(n
-

1) (xn
- xj + (n

-
3) (xn _ t

- x
2) + . . . ,

n(ri*
-

1)

which has been obtained from the last of equations (4), 106, by

putting

^(x) -l + 2+...+n- \n(n + 1) ;

2(^) = 12 + 2* + . . . + n* = in(n + l)(2w + 1) ;

= x + x. + . . . x
; ^x = x + 2x. + . . . + nx.

Such measurements might occur in finding the length of a rod at different

temperatures, the oscillations of a galvanometer needle, the interval between

the dust figures in Kundt's method for the velocity of sound in gases, the

influence of CH2 on the physical and chemical properties of homologous
series, etc.

EXAMPLES. (1) In a Kundt's experiment for the ratio of the specific

heats of a gas, the dust figures were recorded in the laboratory notebook at

30-7, 43-1, 55-6, 67'9, 80'1, 92'3, 104 '6, 116'9, 129-2, 141-7, 154-0, 166-1 centi-

metres. What is the best representative value for the distance between the

nodes ? Ansr. 12 -3 cm.

(2) The following numbers were obtained for the time of vibration, in

seconds, of the "magnet bar" in Gauss and Weber's magnetometer in some

experiments on terrestrial magnetism: 3-25; 9-90; 16-65; 23-35; 30-00; 36*65;

43-30 ; 50-00 ; 56-70 ; 63-30 ; 69-80 ; 76'55 ; 83-30 ; 89-90 ; 96-65 ; 103-15 ; 109-80 ;

116-65 ; 123-25
;
129-95 ; 136-70 ; 143-35. Show that the period of vibration is

6-707 seconds.
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178. The Probable Error.

Some observations deviate so little from the mean that we may
consider that value to be a very close approximation to the truth, in

other cases the arithmetical mean is worth very little. The ques-

tion, therefore, to be settled is, what degree of confidence may we

have in selecting this mean as the best representative value of a

series of observations ? In other words, how good or how bad are

the results ?

We could employ Gauss' absolute measure of precision to answer

this question. It is easy to show that the measure of precision of

two series of observations is inversely as their accuracy. If the

probabilities of an error x
lt lying between and l

lt
and of an error

o:
2 ,
between and 1

2 ,
are respectively

PI =
l

r f
V^J o

it is evident that when the observations are worth an equal degree
of confidence, Pl

= P.
2

.

.-. l
l
h

l
= I.

2
h
2 ; or, l^

: 1.
2
= h.

2
: h^

or the measure of precision of two series of observations is in-

versely as their accuracy. An error ^ will have the same degree
of probability as an error 1.2

when the measure of precision of the

two series of observations is the same.

For instance, if /^
= 4/z-

2 ,
P

l
= P'.2

when 1.
2
= 4^, or four times

the error will be committed in the second series with the same

degree of probability as the single error in the first set. In other

words, the second series of observations will be four times as

accurate as the first.

On account of certain difficulties in the application of this

criterion, its use is mainly confined to theoretical discussions.

One way of showing how nearly the arithmetical mean repre-

sents all the observations, is to suppose all the errors arranged
in their order of magnitude, irrespective of sign, and to select a

quantity which will occupy a place midway between the extreme

limits, so that the number of errors less than the assumed error is

the same as those which exceed it. This is called the probable
error (German

" der wahrscheinliche Fehler "), not " the most

probable error," nor "the most probable value of the actual

error ".
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The probable error determines the degree of confidence we may
have in using the mean as the best representative value of a series

of observations. For instance, the atomic weight of oxygen is

said to be 15-879 with a probable error 0-0003 (H =
1). This

means that the arithmetical mean of a series of observations is

15 >

879, and the probability is J (i.e., the odds are even) that the

true atomic weight of oxygen lies between 15'8793 and 15*8787.

Referring to Fig. 128, let the units be so chosen that the total area bounded

by the curve and the #-axis is unity. If PM and P'M' are drawn at equal dis-

tances from Oy in such a way that the area bounded by these lines, the curve,

and the x-axis (shaded part in the figure), is equal to half the unit area, half

the total observations will have errors numerically less than OM, that is, OM
represents the probable error, PM its probability.

The number of errors greater than the probable error is equal

to the number of errors less than it. Any error selected at ran-

dom is just as likely to be greater as less than the probable error.

Hence, the probable error is the value of x in the integral

page 432. From Table X., page 514, when P =
J, hx = 0-4769 ;

or, if r is the probable error,

hr = 0-4769..... (2)

Now it has already been shown that

y=*e-**, .... (3)
VTT

From page 418, therefore, the probability of the occurrence of the

independent errors x
lt x.^ . . ., xn is the product of their separate

probabilities, or

P-*,-** ... (4)

For any set of observations in which the measurements have been

as accurate as possible, h has a maximum value. Differentiating

the last equation in the usual way, and equating dP/dh to zero,

Substitute this in (2),

r = + 0-6745

But ^(x
2
)

is the sum of the squares of the true errors. The true

errors are unknown. By the principle of least squares, when
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measurements have an equal degree of confidence, the most prob-
able value of the observed quantities are those which render the

sum of the squares of the deviations of each observation from the

mean, a minimum. Let ^(v
2
)
denote the sum of the squares of

the deviations of each observation from the mean. If n is large,

we may put

2(O = 2(O;
but if n is a limited number,

2(i>
2
) < 2(*

2
),

.-. S (x
2
)
= 2(v

2
) + u2

. . . (7)

All we know about u2
is that its value decreases as n increases,

and increases when 2<(x
2
)
increases. It is generally supposed that

the best approximation to u2 oc {^(x
2
)}/n, is to write

n n n - 1*

(Compare u2 with m2 in the next section, 179.) Hence,

r = 0-6747
,
... (8)

\ n JL

which is virtually Bessel's formula for the probable error of a single

observation. 2(v
2
) denotes the sum of the squares of the numbers

formed by subtracting each measurement from the arithmetical

mean of the whole series, n denotes the number of measurements

actually taken.

The probable error of the arithmetical mean of the whole series

of observations is

= 0-6745J-^L ... (9)
\ n(n

-
1)

The derivation of this formula is given as an exercise at the end of

179.

The last two results show that the probable error is diminished

by increasing the number of observations.

(8) and (9) are only approximations. They have no significa-

tion when the number of observations is small. Hence we may
write | instead of 0-6745. For numerical applications, see next

section.

The great labour involved in the squaring of the residual errors of a large

number of observations may be avoided by the use of Peter's approximation

formula. According to this, the probable error of a single observation is

r = 0-8453 ,^tJL, .... (10)
\'n(n

-
1)



$ 17<). PROBABILITY AND THE THKnKY <H BBBOBS, 130

where 2( + v) denotes the sum of the deviations of every observation from the

mean, their sign being disregarded. The probable error of the arithmetical

mean of the whole series of observations is

179. Mean and Average Errors.

The arbitrary choice of the probable error for comparing the

errors which are committed with equal facility in different sets of

observations, appears most natural because the probable error

occupies the middle place in a series arranged according to order

of magnitude so that the number of errors less than the fictitious

probable error, is the same as those which exceed it. There are

other standards of comparison. In Germany, the favourite method

is to employ the mean error (" der mittlere Fehler "), which is de-

fined as the error whose square is the mean of the squares of all the

errors, or the " error which, if it alone were assumed in all the

observations indifferently, would give the same sum of the squares
of the errors as that which actually exists ".

We have seen in 176, (5), that the ratio,

Number of errors between x and x + dx _ "> _ h'2xz
j

Total number of errors
"

J^
Multiply both sides by a?

2 and we obtain

Sum of squares of errors between x and x + dx _
"

2 _^27,
Total number of errors

~~

\J^
X (

By integrating between the limits + GO and - GO we get

Sum of squares of all the errors _ ~2,(X ) ^
fa /*

*
.2
-

fcV-j ,,

TotaFsum of errors n
'

J^J _ x

Let m denote the mean error,

For the integration, see 108.

.-. r = 0-6745w. . . (2)

From (8) and (9) preceding section, the mean error which affects

each single observation is given by the expression

. (3)

and the mean error which affects the whole series of results,
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The mean error must not be confused with the " mean of the

errors," or, as it is sometimes called, the average error,* another

standard of comparison denned as the mean of all the errors re-

gardless of sign. If a denotes the average error,

v) fc2 2-,-=7= xe~ hx dx =
,
=

;
r = O84o3a. (5)

The average error measures the average deviation of each

observation from the mean of the whole series. It is a more

useful standard of comparison than the probable error when the

attention is directed to the relative accuracy of the individual

observations in different series of observations.

The average error depends not only upon the proportion in

which the errors of different magnitudes occur, but also on the

magnitude of the individual errors. The average error furnishes

useful information even when the presence of (unknown) constant

errors
( 182) renders a further application of the "

theory of

errors
"

of questionable utility, because it will allow us to com-

pare the magnitude of the constant errors affecting different series

of observations, and so lead to their discovery and elimination (see

182).

A COMMON FALLACY. The way some investigators refer to the smallness

of the probable error affecting their results conveys the impression that this

canon has been employed to emphasise the accuracy of the work. As a

matter of fact, the probable error does not refer to tlie accuracy of the irork

nor to the magnitude of the errors, but only to the proportion in which the

errors of different magnitudes occur. Cf. page 467.

The reader will be able to show presently that the average error

(A) affecting the mean of n observations is given by the expression

This determines the effect of the average error of the individual

observations upon the mean, and serves as a standard for comparing
the relative accuracy of the means of different series of experiments
made under similar conditions.

EXAMPLES. Tables VI., VII., VIII., IX., will be found to save a great

deal of labour in calculating the probable and mean errors of a series of

observations.

* Some writers call our "average error" the " mean error," and our " mean error
"

the "error of mean square ".
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(1) The following galvanometer deflections were obtained in some obser-

vations on the resistance of a circuit: 87 -0, 36-8, 36-8, 86-9, 37'1. Find the

probable and mean errors. This small number of observations is employed

simply to illustrate the method of using the above formulae. In practical

work, mean or probable errors deduced from so small a number of observations

are of little value.

Arrange the following table :

N limber of

Observation.
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The following results are convenient for reference :

1. The mean (or probable error) of the sum of a number of ob-

servations is equal to the square root of the sum of the squares of
the mean (or probable) errors of each of the observations.

Let
a?!,

#2 , represent two independent measurements whose sum, or differ-

ence combines to make a final result X, so that

.Y = *! + .r2 .

Let the mean errors of x
l
and x2 , be m^ and w2 respectively. If M denotes

the mean error in X,
A' + M = (xl + Wj) + (x2 m

2).

.\ + M = + m
li
+ m2 .

However we arrange the signs of M, m^, w2 ,
in the last equation, we can only

obtain, by squaring, one or other of the following expressions :

M2 = m^ -\- 2mjmz + w2
2

; or, M2 = wx
2 - 2m

1
m2 + m2

2
,

it makes no difference which. Hence the mean error is to be found by taking
the mean of both these results. That is to say,

M* = m^ + 7 2
2

; or, M = Jm* + w2
2

,

because the terms containing + in^n^ and - m
l
m2 cancel each other. This

means that the products of any pair of residual errors (W]W2 , vn^ni^ . .
.)

in an

extended series of observations will have positive as often as negative signs.

Consequently, the influence of these terms on the mean value will be negligibly

small in comparison with the terms m-f, m2
2

,
?n3

2
,

. . ., which are always posi-

tive. Hence, for any number of observations,

M* = m* + m* + . . .
; or, M = V/K2 + w2

2
+...). . (7)

From equation (2), page 439, the mean error is proportional to the probable
error R, m-^ to r

1?
. . ., hence,

B = * + r, + . . v.
; or, fl = V^2 + r2

2 +...).. . (8)

In othe"r words, the probable error of the SUM or DIFFERENCE of
two quantities A and B respectively affected with probable errors

a and + b is

E = v/a
2 + R . . . . (9)

EXAMPLES. (1) The molecular weight of titanium chloride (TiCl4)
is

known to be 188-545 '0092, and the atomic weight of chlorine 35-179 '0048,

what is the atomic weight of titanium ? Ansr. 47*829 + -0213. Hints.

188-545 - 4 x 35-179 = 47'829 ;
E =

v/(-0092)
2 + (4 x -0048)

2 = '0213.

(2) The mean errors affecting 6
l
and 2 in the formula R =

7c(02
-

0^ are

respectively + -0003 and + -0004, what is the mean error affecting 6.2
- 6

l
and

3(02
-

0j) ? Ansr. -0005 and 0015.

2. The probable error of the PRODUCT of two quantities A and

B respectively affected with the probable errors a and b is

R =
(Ab)'

2 + (5a)
2

. . . . (10)
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EXAMPLES. (1) Thorpe found that the molecular ratio

Ag : TiCl4
= 100 : 44-017 -0031.

Hence determine the molecular weight of titanium tetrachloride, given the

atomic weight of silver = 107-108 -0031. Ansr. 188-583 -0144. Hint.

R = V{(4 x 107-108 x -0031)
a + (44-017 x 4 x -0031)

2
}.

(2) The specific heat of tin is -0537 with a mean error of + -0014, and the

atomic weight of the same metal is 118-150 + -0089, show that the mean error

the product of these two quantities (Dulong and Petit's law) is 6-38 -1654.

If a third mean, C, with a probable error, + c, is included,

R = \'(BCa)* + (ACby + (A Be)*. . . . (11)

3. The probable error of the QUOTIENT (B -f- A) of two quantities

A and B respectively affected ivith the probable errors + a and b is

/7Bo
Vbr^ +b

R = -- (12)

EXAMPLES. (1) It is known that the atomic ratio

Cu : 2Ag = 100 : 339-411 -0039,

what is the atomic weight of copper on the assumption that

Ag = 107-108 -0031 ?

Ansr. 63-114 + -0020. Hint.

214-216 x -0039\ a

339:411
1 + (-0062)2 H- 339-411 = + -0020.

Cu : 2 x 107-108 = 100 : 339-411
;

.-. Cu = 63-114.

(2) Suppose that the maximum pressure of the aqueous vapour (/2) in the

atmosphere at 16 is found to be 8-2, with a mean error + -0024, and the

maximum pressure of aqueous vapour (/a) at the dewpoint, at 16, is 13'5,

with a mean error of + -0012. The relative humidity (li)
of the air is given

by the expression h =
/!//2 , Show that the relative humidity at 16 is

'6074 -0022.

4. The probable error of the PROPORTION

A : B = C : x,

where A, B, C, are quantities respectively affected with the probable

errors a, + b, + c, is

IfBCa
Vbr , T (06)* + (Bey

-, - . (13)

EXAMPLE. Stas found that AgCl03 furnished 25-080 -0010 / of oxygen
and 74-920+ -0003 / otAgCL If the atomic weight of oxygen is 15-879 -0003,

what is the molecular weight of AgCl ? Ansr. 142-303 -0066. Hints.

25-080 : 74-920 = 3 x 15-879 : x ; .-. x = 142-303.
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If A: B = C + x: D + x,

EXAMPLE. Stas found that 31-488 + -0006 grams of NHCl were equiva-

lent to 100 grams of AgNOf,. Hence determine the atomic weight of nitrogen,

given Ag = 107-108 -0031 ; Cl = 35-179 -0048 ;
H = 1

; O3
= 47'637 -0009.

Ansr. 13-911 -0048.

5. The probable error of the arithmetical mean of a series of

observations is inversely as the square root of their number.

Let r
lt

r2 ,
. . ., rn be the probable errors of a series of independent obser-

vations a
lt 2 , . . ., an ,

which have to be combined so as to make up a final

result u. Let the probable errors be respectively proportional to the actual

errors dav da2 ,
. . ., dan . The final result u is a function such that

u=f(alt Og, . . .,).
The influence of each separate variable on the final result may be determined

by partial differentiation so that

du = do! + -dos + ...,. . . . (15)

where dav da.2 ,
. . . represent the actual errors committed in measuring %,

2 , . . . ; the partial differential coefficients determine the effect of these

variables upon the final result u
;
and du represents the actual error in u

due to the joint occurrence of the errors da^ da2 ,
. . .

If we employ B in place of du, i\ in place of da^, etc., square (15) and

show that

The arithmetical mean of n observations is

u = (% + a2 + . . . +

therefore,

n2

But the observations have an equal degree of precision, and therefore,

This result shows how easy it is to overrate the effect of multi-

plying observations. If R denotes the probable error of the mean

of 8 observations, four times as many, or 32 observations must be

made to give a probable error of ^E ;
nine times as many, or 72

observations must be made to reduce E to R, etc.

EXAMPLES. (1) Two series of determinations of the atomic weight of oxygen

by a certain process gave respectively 15*8726 -00058 and 15-8769 -00058.

Hence show that the atomic weight is accordingly written 15-87475 -00041.
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(2) In the preceding section, 178, given formula (8) deduce (9). Hint.

Use (17), present section.

(8) Deduce Peter's approximation formulae (10) and (11), 3 178. Hint.

Since

2(*
2
)/n = S(i>)/(

-
1),

page 438, we may suppose that on the average

2(x) : v/fi = 2(r) : \fn -
1,

etc.

(4) Show that when n is large, the result of dividing the mean of the

squares of the errors by the square of the mean of the errors is constant.

Hint. Show that

This has been proposed as .<i test of the fidelity of the observations, and of the

accuracy of the arithmetical work. For instance, the numbers quoted in the

example on page 468 give 2(v) = 55'53; 2(y
2
)
= 354-35 ; 7i = 14; constant= 1-60.

The canon does not usually work very well with a small number of observations.

(5) Show that the probable (or mean) error is inversely proportional to

the absolute measure of precision. Hint. From (1) and (2)

1
r = r x constant, .... (19)

etc. See $ 190.

180. Numerical Values of the Probability Integrals.

We have discussed the two questions :

1. What is the best representative value of a series of measure-

ments affected with errors of observations ?

2. How nearly does the arithmetical mean represent all of a

given set of measurements affected with errors of observation ?

It now remains to inquire

3. How closely does the arithmetical mean approximate to the

absolute truth ?

To illustrate, we may use the results of Crookes' model research

on the atomic weight of thallium (Phil. Tram., 163, 277, 1874) :

203-628; 203-632; 203-636; 203-638; 203-639;

203-642; 203-644; 203-649; 203-650; 203-666" ^ Mean:

The arithmetical mean is only one of an infinite number of possible

values of the atomic weight of thallium between the extreme limits

203-628 arid 203*666. It is very probable that 203*642 is not the

true value, but it is also very probable that 203*642 is very near

to the true value sought. The question
" How near?" cannot be

answered. Alter the question to " What is the probability that
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the truth is comprised between the limits 203 '642 + x?" and the

answer may be readily obtained however small we choose to make

the number x.

First, suppose that the absolute measure of precision (h) of the

arithmetical mean is known.

Table X. gives the numerical values of the probability integral
"hjt

e~ h

^d(hx),

where P denotes the probability that an error of observation will

have a positive or negative value equal to or less than x, h is the

measure of the degree of precision of the results.

When h is unity, the value of P is read off from the table

directly. To illustrate, we read that when x = + O'l P = -112
;

when x = 0'2 P = '223
; . . ., meaning that if 1,000 errors are

committed in a set of observations with a modulus of precision

h = 1, 112 of the errors will lie between + 0-1 and - O'l
, 223

between + 0'2 and -
0'2, etc. Or, 888 of the errors will exceed

the limits O'l
; 777 errors will exceed the limits 0'2

;
. . .

When h is not unity, we must use
~-j- t

-r-
,

. .
.,

in place of

0-1, 0-2, . . .

EXAMPLES. (1) If hx = 0-64, P, from the table, is 0-6346. Hence 0-6346

denotes the probability that the error x will be less than 0'64//i, that is to

say, 63-46
/

of the errors will lie between the limits + 0'64//i. The remaining

36-54% will lie outside these limits.

(2) Required the probability that an error will be comprised between the

limits 0-3 (h = 1). Ansr. -329.

(3) Required the probability that an error will lie between - O'Ol and

+ 0-1 of say a milligram. This is the sum of the probabilities of the limits

from to - 0-01 and from to + 0-1 (h = 1). Ansr. -0113 + -1125 = -1237.

(4) Required the probability that an error will lie between +1-0 and +0-01.

This is the difference of the probabilities of errors between 1-0 and zero and be-

tween 0-01 and zero (h = 1). Ansr. -8427 - -0113 = -8314.

This table, therefore, enables us to find the relation between the

magnitude of an error and the frequency with which that error will

be committed in making a large number of careful measurements.

It is usually more convenient to work from the probable error R
than from the modulus h. More practical illustrations have, in

consequence, been included in the next set of examples.
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Second, suppose that the probable error of the arithmetical mean
is known.

Table XI. gives the numerical values of the probability integral

p _

where P denotes the probability that an error of observation of a

positive or negative value, equal to or less than x, will be com-

mitted in the arithmetical mean of a series of measurements with

probable error r (or R). This table makes no reference to h. To
illustrate its use, of 1,000 errors, 54 will be less than ^R ; 500

less than R ; 823 less than 2R
; 957 less than 3R

; 993 less than

4tR
;
and one will be greater than 5R.

EXAMPLES. (1) A series of results are represented by 6-9 with a probable
error + 0-25. The probability that the probable error is less than 0-25 is .

What is the probability that the actual error will be less than 0-75 ? Here

xfR = 0-75/0-25 = 3. From the table, p = 0-9570 when x/R = 3. This means
that 95-7 /

of the errors will be less than 0'75 and 4-3 / greater.

(2) Dumas has recorded the following 19 determinations of the chemical

equivalent of hydrogen (O = 100) using sulphuric acid (H2S04 )
with some, and

phosphorus pentoxide (P2O5 )
as the drying agent in other cases :

i. HZS04 : 12-472, 12-480, 12-548, 12-489, 12-496, 12-522, 12-533, 12-546,

12-550, 12-562;

ii. P.2O5 : 12-480, 12-491, 12-490, 12-490, 12-508, 12-547, 12-490, 12-551,

12-551. Dumas' " Recherches sur la Composition de 1'Eau," Ann. de Chim.

et de Phys. [3], 8, 200, 1843.

What is the probability that there will be an error between the limits

+ 0-015 in the mean (12-515), assuming that the results are free from constant

errors ? The chemical student will perhaps see the relation of his answer to

Prout's law.

Hints, x/R = t R = -004685 ;
x =? -015

;
.-. t = 3-2. From Table XI.,

when t = 3-2, P = -969. Hence the odds are 969 to 31 that the mean 12-515

is affected by no greater error than is comprised within the limits + -015.

To exemplify Table X., h = -4769/tf = 102, .-. hx = 102 x -015 = 1-53. From
the table, P = -969 when hx = 1-53, etc. That is to say, 96-9 / of the errors

will be less and 3-1
/ greater than the assigned limits.

(3) From Crookes' ten determinations of the atomic weight of thallium

(above) calculate the probability that the atomic weight of thallium lies be-

tween 203-632 and 203-652. Here x = 0-01
;
R = -0023

;
.-. t = x/R = 4-4.

From Table XI., P = -997. (Note how near this number is to unity indicating

certainty.) The chances are 332 to 1 that the true value of the atomic weight
of thallium lies between 203-632 and 203-652. We get the same result by
means of Table X. Thus h = -4769/-0023 = 207; .'. /w = 207 x -01 = 2-07.

When hx = 2-07, P = -997. If 1,000 observations were made under the same
conditions as Crookes', we could reasonably expect 997 of them to be affected
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by errors numerically less than O'Ol, and only 3 observations would be affected

by errors exceeding these limits.

The rules and formulae deduced up to the present are by no

means inviolable. The reader must constantly bear in mind the

fundamental assumptions upon which we are working. If these

conditions are not fulfilled, the conclusions may not only be super-

fluous, but even erroneous. The necessary conditions are :

1. Every observation is as likely to be in error as every other one.

2. There is no perturbing influence to cause the results to have a

bias or tendency to deviate more in some directions than in others.

3. A large number of observations has been made. In practice,

the number of observations may be considerably reduced if the

second condition is fulfilled. In the ordinary course of things from

10 to 25 is usually considered a sufficient number.

181. Maxwell's Law of Distribution of Molecular Velocities.

In a preceding discussion, the velocities of the molecules of a

gas were assumed to be the same. Can this simplifying assump-
tion be justified ?

According to the kinetic theory, a gas is supposed to consist of

a number of perfectly elastic spheres moving about in space with a

certain velocity. In case of impact on the walls of the bounding

vessel, the molecules are supposed to rebound according to known

dynamical laws. This accounts for the pressure of a gas.

The velocities of all the molecules of a gas in a state of equili-

brium are not the same. Some move with a greater velocity than

others. At one time a molecule may be moving with a great

velocity, at another time, with a relatively slow speed.

The attempt has been made to find a law governing the distri-

bution of the velocities of the motions of the different molecules,

and with some success. Maxwell's law is based upon the assump-
tion that the same relations hold for the velocities of the molecules

as for errors of observation. This assumption has played a most

important part in the development of the kinetic theory of gases.

The probability y that a molecule will have a velocity equal to

x is given by an expression of the type :
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A graphical representation of this law is readily obtained by plotting

corresponding values of x and y in the usual way.

Very few molecules will have velocities outside a certain restricted

range. It is possible for a molecule to have any velocity whatever

but the probability of the existence of velocities outside certain

limits is vanishingly small.

The reader will get a better idea of the distribution of the velocities of the

molecules by plotting the graph of the above equation for himself. Remember
that the ordinates are proportional to the number of molecules, abscissae to

their speed. Areas bounded by the x-axis, the curve and certain ordinates

will give an idea of the number of molecules possessing velocities between the

abscissae corresponding to the boundary ordinates. Use Table XXIII.

Returning to the study of the kinetic theory of gases, 173,

the number of molecules with velocities between v and v + dv is

assumed to be represented by an equation analogous to the ex-

pression employed to represent the errors of mean square in 179,

namely,

where N represents the total number of molecules, a is a constant

to be evaluated.

1. To find a value for the constant a in terms of the average

velocity (
F

) of the molecules.

Since there are dN molecules with a velocity v, the sum of the velocities

of all these dN molecules is vdN, and the sum of the velocities of all the

molecules must be

v.dN.
= o

From (2),

4 r
n=j=a'\W

(How did N vanish ?) Hence,

= *V x'. ..... (3)

2. To find the average velocity of the molecules of a gas.

By a well-known theorem in elementary mechanics, the kinetic energy of

a mass m moving with a velocity v is tynv
2

. Hence, the sum of the kinetic

energies of the dN molecules will be %(mdN)v
z

,
because there are dN molecules

FF
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moving with a velocity v. From (2), therefore, the total kinetic energy (T) of

all the molecules is

/
= GO n Afm rx #2

T=
/ lmv*.dN==^F: t,4 e ~a*dv
.',= o-Vir.'o

= %Nma? = fAfo
8

.

(4)

where If = .Nw = total mass of N molecules each of mass m.

The total kinetic energy of N molecules of the same kind is

T = \mv* + $mv2
2 + . . . + fynvj? = %m(v + v2

2 + . .
- + vjp). (5)

The velocity of mean square ( U] is defined as the velocity whose square
is the average of the squares of the velocities of all the N molecules, or,

From (5), therefore,

T = mNU* = MU*...... (6)

From (4) and (6), therefore,O2>

a =
^|;

and F
=^j=

= "9213 C7..... (7)

Most works on chemical theory
*

give a simple method of proving that if

p denotes the pressure and p the density of a gas,

P = *pU*....... (8)

This in conjunction with (6) allows the average velocity of the molecules of a

gas to be calculated from the known values of the pressure and density of the

gas.

NUMERICAL EXAMPLE. One c.c. of hydrogen gas weighs '0000896 grams
under standard barometric pressure, 76 cm. of mercury. Specific gravity of

mercury = 13 '5. Hence, a column of mercury 76 cm. long and 1 sq. cm.

-cross-section weighs 76 x 13-5 = 1033-2 grams. But,

Weight = Mass x Acceleration of gravity,

Weight of unit volume
p Density = Mass of unit volume = - -
= -0000896/981 = -000009.

From (7) and (8),

= -9213 . -9213 = 184,000.

That is to say, the average velocity of hydrogen molecules under atmospheric

pressure at C. is approximately 184,000 centimetres per second.

3. To show that the average velocity of the molecules of a gas is

proportional to its rate of diffusion.

This will be left as an exercise. Hint. Use (7) and (8) above, and (1),

95. See also (2), 190.

The reader is no doubt familiar with the principle underlying

Maxwell's law, and, indeed, the whole kinetic theory of gases. I

*
E.g., Ramsay's Experimental Proofs of Chemical Theoryfor Beginners.
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nijiy mention two examples. The number of passengers on say
thf 3.10 P.M. suburban daily train is fairly constant in spite of the

fact that that train does not carry the same passengers two days

running. Insurance companies can average the number of deaths

per 1,000 of population with great exactness. Of course I say

nothing of disturbing factors. A bank holiday may require pro-

vision for a supra-normal traffic. An epidemic will run up the

death rate of a community. The commercial success of these

institutions is, however, sufficient testimony of the truth of the

method of averages, otherwise called the statistical method
of investigation. The same type of mathematical expression is

required in each case.

It will thus be seen that calculations, based on the sup-

position that all the molecules possess equal velocities, are quite

admissible in a first approximation. The net result of the

"dance of the molecules" is a distribution of the different velo-

cities among all the molecules, which is maintained with great

exactness.

G. H. Darwin has deduced values for the mean free path, etc., from the

hypothesis that the molecules of the same gas are not all the same size. He
has examined the consequences of the assumption that the sizes of the mole-

cules are ranged according to a law like that governing the frequency of errors

of observation. For this, see his memoir " On the mechanical conditions of a

swarm of meteorites'" (Phil. Trans., 180, 1, 1889).

182. Constant Errors.

The irregular accidental errors hitherto discussed have this

distinctive feature, they are just as likely to have a positive as a

negative value. But there are errors which have not this character.

If the barometer vacuum is imperfect, every reading will be too

small
;

if the glass bulb of a thermometer has contracted after

graduation, the zero point rises in such a way as to falsify all

subsequent readings ; if the points of suspension of the balance

pans are at unequal distances from the centre of oscillation of the

beam, the weighings will be inaccurate. A change of tempera-
ture of 5 or 6 may easily cause an error of 0-2 to 1'0/ in an

analysis, owing to the change in the volume of the standard

solution. Such defective measurements are said to be affected
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by constant errors.* By definition, constant errors are produced

by well-defined causes which make the errors of observation pre-

ponderate more in one direction than in another. Thus, some of

Stas' determinations of the atomic weight of silver are affected by
a constant error due to the occlusion of oxygen by metallic silver in

the course of his work.

One of the greatest trials of an investigator is to detect and

if possible eliminate constant errors. This is usually done by

modifymg the conditions under which the experiments are per-

formed. Thus the magnitude is measured under different condi-

tions, with different instruments, etc. It is assumed that even

though each method or apparatus has its own specific constant

error, all these constant errors taken collectively will have the

character of accidental errors. To take a concrete illustration,

faulty "sights" on a rifle may cause a constant deviation of the

bullets in one direction ;
the "

sights
"
on another rifle may cause

a constant "error"
( 174) in another direction, and so, as the

number of rifles increases, the constant errors assume the character

of accidental errors and thus, in the long run, tend to compensate
each other. This is why Stas generally employed several different

methods to determine his atomic weights. To quote one practical

case, Stas made two sets of determinations of the numerical value

of the ratio Ag\: KCl. In one set, four series of determinations

were made with KCl prepared from four different sources in con-

junction with one specimen of silver, and in the other set different

series of experiments were made with silver prepared from different

sources in conjunction with one sample of KCl.-f

The calculation of an arithmetical mean is analogous to the

process of guessing the centre of a target from the distribution of

the " hits
"

(Fig. 127). If all the shots are affected by the same

constant error, the centre, so estimated, will deviate from the true

centre by an amount depending on the magnitude of the (presumably

* Personal error. This is another type of constant error which depends on the

personal qualities of the observer. Thus the differences in the judgments of the

astronomers at the Greenwich Observatory as to the observed time of transit of a star

and the assumed instant of its actual occurrence is said to vary from rJ1T
to ^ of a

second, and to remain fairly constant for the same observer. Some persistently read

the burette a little high, others a little low. Vernier readings, analyses based on

colorimetric tests (such as Nessler's ammonia process), etc., may be affected by
personal errors.

f Unfortunately the latter set was never completed.
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unknown) constant error. If this magnitude can be subsequently

determined, a simple arithmetical operation (addition or subtraction)

will give the correct value. Thus Stas found that the amount of

potassium chloride equivalent to 100 parts of silver, in one case,

was as

Ag : KCl = 100 : 69-1209.

The KCl was subsequently found to contain '00259 / of silica.

The chemical student will see that -00087 has consequently to be

subtracted from 69-1209. Hence,

AH : KCl = 100 : 69-11903.

After Lord Kayleigh (Proc. Roy. Soc., 43, 356, 1888, or rather

Agamennone in 1885) pointed out that the capacity of an exhausted

glass globe is less than when the globe is full of gas, all measure-

ments of the densities of gases involving the use of exhausted

globes had to be corrected for shrinkage. Thus Regnault's ratio,

1 : 15-9611, for the relative densities of hydrogen and oxygen was
" corrected for shrinkage

"
to 1 : 15-9105. The proper numerical

corrections for the constant errors of a thermometer are indicated

on the well-known " Kew certificate," etc.

If the mean error of each set of results differs, by an amount

to be expected, from the mean errors of the different sets measured

with the same instrument under the same conditions, no constant

error is likely to be present. The different series of atomic weight de-

terminations of the same chemical element, published by the same

(perhaps excluding Stas) or by different observers, do not stand this

test satisfactorily. Hence, Ostwald concludes that constant errors

must have been present even though they have escaped the ex-

perimenter's ken.

EXAMPLE. Discuss the following: "Merely increasing the number of

experiments, without varying the conditions or method of observation,

diminishes the influence of accidental errors. It is, however, useless to

multiply the number of observations beyond a certain limit. On the other

hand, the greater the number and variety of the observations, the more

complete will be the elimination of the effects of both constant and accidental

errors."

183. Proportional Errors.

One of the greatest sources of error in scientific measurements

occurs when the quantity cannot be measured directly. In such

cases, two or more separate observations may have to be made on
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different magnitudes. Each observation contributes some little

inaccuracy to the final result. Thus Faraday has determined the

thickness of gold leaf from the weight of a certain number of

sheets. Foucault measures time, Le Chatelier measures tempera-

ture in terms of an angular deviation. The determination of the

rate of a chemical reaction often depends on a number of more or

less troublesome analyses .*

For this reason, among others, many chemists prefer the standard O = 16

as the basis of their system of atomic weights. The atomic weights of most

of the elements have been determined directly or indirectly with reference to

oxygen. If H 1 be the basis, the atomic weights of most of the elements

depend on the nature of the relation between oxygen and hydrogen a

relation which has not yet been fixed in a satisfactory manner. The best de-

terminations made since 1887 vary between H: O= l : 15-96 and H: = 1 : 15-87.

If the former ratio be adopted, the atomic weights of antimony and uranium

would be respectively 119*6 and 239-0
;
while if the latter ratio be employed,

these units become respectively 118-9 and 237'7, a difference of one and two

units ! It is, therefore, better to contrive that the atomic weights of the

elements do not depend on the uncertainty of the ratio H : O, by adopting
the basis : = 16.

If the quantity to be determined is deduced by calculation from

a measurement, Taylor's theorem furnishes a convenient means of

criticising the conditions under which any proposed experiment is

to be performed, and at the same time furnishes a valuable insight

into the effect of an error in the measurement on the whole result.

It is of the greatest importance that every investigator should

* Indirect results are liable to another source of error. The formula employed

may be so inexact that accurate measurements give but grossly approximate result*.

For instance, a first approximation formula may have been employed when the

accuracy of the observations required one more precise ;
TT

-
*?- may have been put

ln place of ir 3'14159
;

or the coefficient of expansion of a perfect gas has Vven

applied to an imperfect gas. Such errors are called errors of method.

There is a well-defined distinction between the approximate values of a physical

constant, which are seldom known to more than three or four significant figures

(see 189), and the approximate value of the incommensurables TT, e, \
;

2, . . . which

can be calculated to any desired degree of accuracy. If we use -v2- in place of 3 '1416

for TT, the absolute error is greater than or equal to 3 '1426 3 '1416, and equal to or

less than 3-1428 - 3*1416
;
that is, between '0012 and '0014. In scientific work we

are not concerned with absolute errors although it is assumed that the proportional
error is an approximate representation of the ratio of the absolute error to the true

value of the magnitude.

By the way,
" > "

is a convenient abbreviation used in place of the phrase
"

is

greater than or equal to," and " <" is used in place of "is equal to or less than".

See page 10.
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have a clear idea of the different sources of error to which his

results are liable in order to be able to discriminate between im-

portant and unimportant sources of error, and to find just where

the greatest attention must be paid in order to obtain the best

results.

Let y be the desired quantity to be calculated from a magnitude
x which can be measured directly and is connected with y by the

relation

</=/(*)

f(x) is always affected with some error dx which causes y to deviate

from the truth by an amount dy. The error will then be

dy =
(y + dy)

- y = f(x + dx)
-

f(x).

dx is necessarily a small magnitude, therefore, by Taylor's theorem,

f(x + dx) =
f(x) + f(x) . dx + . . .,

or, neglecting the higher orders of magnitude,

dy = f'(x) . dx.

The relation between the error and the total magnitude of y is

dy f(x) . dx

y
=

/(*)

The ratio dy/y is called the proportional, relative, or fractional

error,* that is to say, the ratio of the error involved in the whole

process to the total quantity sought.

Students often fail to understand why their results seem all

wrong when the experiments have been carefully performed and

the calculations correctly done. For instance, the molecular

weight of a substance is known to be either 160, or some multiple

of 160. To determine which, -380 (or w) grm. of the substance

was added to 14*01 (or wj grms. of acetone boiling at ^
1 (or 3 '50)

on Beckmann's arbitrary scale, the temperature, in consequence, fell

to O.y (or 3 -36) ;
the molecular weight of the substance (M) is then

represented by the known formula

M = 1670 -
; or, J/ = 1670-^ - = 323,

or approximately 2 x 160. Now assume that the temperature

readings may be + 0'05 in error owing to convection currents,

radiation and conduction of heat, etc. Let 0^ = 3 '55 and 0.2
= 3 '31,

100 . (.lyly is the percentage error.



456 HIGHER MATHEMATICS. $ 183.

This means that an error of ~ in the reading of the thermometer

would give a result positively misleading. This example is by no

means exaggerated. The simultaneous determination of the heat

of fusion and of the specific heat of a solid by the solution of two

simultaneous equations, and the determination of the latent heat

of steam are specially liable to similar mistakes. A study of the

reduction formula will show in every case that relatively small

errors in the reading of the temperature are magnified into

serious dimensions by the method used in the calculation of the

final result.

EXAMPLE. The radius of curvature
(r)

of a lens, is given by the formula

r = afl(f
-

a).

(See any textbook on optics for the meaning of the symbols.) Let the true

values of / and a be respectively 20 and 15. Let / and a be liable to error to

the extent of + -5, say, / is read 20-5 and a, 14-5. Then the true value of r is

60, the observed value 51-2. Fractional error = 8'8/60. This means that an
error of about 2-5 / in the determination of / and a may cause r to deviate

15 /
from the truth.

The degree of accuracy of a measurement is determined by the

magnitude of the proportional error.

Magnitude of error
=

Total magnitude of quantity measured*

If we knew that an astronomer had made an absolute error of

100,000 miles in estimating the distance between the earth and

the sun, and also that a physicist had made an absolute error of

*ne ioooo.ooooootn f a mile m measuring the wave length of a

^spectral line, we could form no idea of the relative accuracy of the

two measurements in spite of the fact that the one error is the

looo.oooo^o.ooooooth Part of the other. In the first measurement

the error is about 1|0

1

00
- of the whole quantity measured, in the

second case the error is about the same order of magnitude as the

quantity measured. In the former case, therefore, the error is neg-

ligibly small
;
in the latter, the error renders the result nugatory.

The following examples will serve to fix these ideas :

EXAMPLES. (1) It is required to determine the capacity of a sphere from

the measurement of its diameter. Let y denote the volume, x the diameter,

then> by a well-known mensuration formula,

y = ^-
It is required to find the effect of a small error in the measurement of the
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diameter on the calculated volume. Suppose an error dx is committed in the

measurement, then

.'/ + dy = kw (x + (1

=
frr{.i"' + H.r-W.1- +

:-J.r(</.i-)'- -f ('/.!)';.

By hypothesis, dx is a very small fraction, therefore, by neglecting the higher

powers of dx and dividing the result by the original expression

.// -f dy _ 1 (3? + 3x*dx\ dy dx

y -5*\ *- J
;

y
= 8T-

Or, the error in the calculated result is three times that made in the

measurement. Hence the necessity for extreme precautions in measuring
the diameter. Sometimes, we shall find, it is not always necessary to be so

careful.

The same result could have been more easily obtained by the use of

Taylor's theorem as described above. Differentiate the original expression
and divide the result by the original expression. We thus get the relative

error without trouble.

(2) Criticise the method for the determination of the atomic weight of

lead from the ratio Pb : O in lead monoxide.

Let y denote the atomic weight of lead, a the atomic weight of oxygen

(known). It is found experimentally that x parts of lead combine with one

part of oxygen, the required atomic weight of lead is determined from the

simple proportion
y : a = x : 1

; or, y = ax
; or, dy = adx ;

.'.dyly = dxlx (2)

Thus an error of 1
/

in the determination of x introduces an equal error

in the calculated value of y. Other things being equal, this method of

finding the atomic weight of lead is, therefore, very likely to give good
results.

(3) Show that the result of determining the atomic weight of barium by

precipitation of the chloride with silver nitrate is less influenced by experi-

mental errors than the determination of the atomic weight of sodium in the

same way.
Assume that one part of silver nitrate requires x parts of sodium (or

barium) chloride for precipitation as silver chloride. Let a and b be the

known atomic weights of silver and chlorine. Then, if y denotes the atomic

weight of sodium,

y + b : a = .r : 1 ; or, y = ax -
6,

a = (y + tyl*.

Differentiating (3) and substituting for y = 23, b = 35-5,

dy a d? y + l
2-54-

y
=

ax - b
dx

y
' x~ * x '

or an error of 1/ in the determination' of chlorine in sodium will introduce

an error of 2-5% in the atomic weight of sodium. Hence it is a disadvantage

to have b greater than y. For barium the error introduced is l-5/ instead

<rf2-5/ .

(4) If the atomic weight of barium y is determined by precipitation of

barium sulphate from barium chloride solutions, and a denotes the known

atomic weight of chlorine, b the known " atomic
"

weight of .SO4 , then
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*

when x parts of barium chloride are converted into one part of barium

sulphate,

dy (a
- b)dx

y + a:y+b =
l:x;j

=
(1

_
x} (ax

_ by

What does this mean ?

(5) An approximation formula used in the determination of the viscosity

of liquids is

T,
=

Trptr+ISvl,

where v denotes the volume of liquid flowing from a capillary tube of radius r

and length I in the time t
; p is the actual pressure exerted by the column of

liquid. Show that the proportional error in the calculation of the viscosity r?

is four times the error made in measuring the radius of the tube.

(6) In a tangent galvanometer, the tangent of the angle of deflection of

the needle is proportional to the current. Prove that the proportional error

in the calculated value of the current due to a given error in the reading is

least when the deflection is 45.

The strength of the current is proportional to the tangent of the displaced

angle x, or

n * /(#) = c tan x
;

C . dx dy dx
.'. dy 9 ; or, =

cos2a: '

y sin x . cos x

To determine the minimum, put

d fdy\ sin2^ - cos'2a? _ ~
.

dx\ y ) sin2.c . cos2ic

.-. sin2ic = cos'2x, or, sin a; = cosx.

This is true only in the neighbourhood of 45,* and, therefore, in this region.

an error of observation will have the least influence on the final result. In

other words, the best results are obtained with a tangent galvanometer when
the needle is deflected about 45.

What will be the effect of an error of O25 in reading a deflection of 42,.

on the calculated current ? Note that x in the above formula is expressed in

circular or radian measure (page 494). Hence,

O25(degrees) =
* x '2o = -00436(radians).

y sin x . cos x sin 2x sin 84

since, from a Table of Natural Sines, sin 84 = -9945.

(7) Show that the proportional error involved in the measurement of an:

electrical resistance on a Wheatstone's bridge is least near the middle of the

bridge.

Let R denote the resistance, I the length of the bridge, x the distance of

the telephone from one end.

.-. y = Rxl(l + x).

Proceed as above and show that when x = \l (the middle of the bridge), the

proportional error is a minimum.

* Table XIV., page 497, sin 45 = cos 45.



.$
is:;. PROBABILITY AND Till! TIIKoKY OK K

(8) By AV/r/o/i\s l<iir of nttmctittn, the force of gravitation (g) between

two bodies varies directly as their respective masses (TO,, wa) and inversely as

the square of their distance apart (r). The mass of each body is supposed to

be collected at its centroid (centre of gravity). The weight of one gram at

Paris is equivalent to 980-868 dynes. The dyne is the 'unit of force. Hence
Newton's law. g = nin^njr- (dynes), may be written w = a/r

2
(grams), where

a is a constant equivalent to /* x H^ x w.2 x 980-868. Hence show that for

small changes in altitude dwjw = -
2dr/r. Interpret this result.

Marek was able to detect a difference of '1 in 500,000,000 when comparing
the kilogram standards of the Bureau International des Poids et Mesures.

Hence show that it is possible to detect a difference in the weight of a sub-

stance when one scale pan of the balance is raised one centimetre higher than

the other. (Radius of the earth = 6,371,300 metres.)

(9) In his well-known work on the gravimetric composition of water, Dumas
determined the weight of hydrogen from the difference in the weight of oxygen

required to burn up the hydrogen and the weight of water formed. Hence

verify Dumas' remarks :

"
ainsi, une erreur de ^^ sur le poids de 1'eau, ou de

^for sur le poids de 1'oxygene, affecte d'une quantite egale a ^V ou a ^ le poids

de 1'hydrogene. Que ces erreurs etant dans le meme sens viennent a s'ajouter,

et 1'on aura des erreurs qui iront a ^ "
(Ann. de Chim. et de Phys. [3], 8, 198,

1843).

Proportional errors of composite measurements. Whenever a

result has to be determined indirectly by combining several different

species of measurements weight, temperature, volume, electro-

motive force, etc. the effect of a percentage error of, say, 1 / in

the reading of the thermometer will be quite different from the

effect of an error of 1 / in the reading of a voltmeter.

It is obvious that some observations must be made with

greater care than others in order that the influence of each kind

of measurement on the final result may be the same.

If a large error is compounded with a small error, the total

error is not appreciably affected by the smaller. Hence Ostwald

recommends, "a variable error may be neglected if it is less than

one-tenth of the larger, often indeed if it is but one-fifth ".

EXAMPLES. (1) Joule's relation between the strength of a current C

(amperes) and the quantity of heat Q (calories) generated in an electric con-

ductor of resistance R (ohms) in the time / (seconds), is,

Q = 0-24C-/.'/.

Show that R and t must be measured with half the precision of C in order to

have the same influence on Q.

(2) What will be the fractional error in Q corresponding to a fractional

error of O'l / in R ? Ansr. 0-001, or 0-1 / .

(3) What will be the percentage error in C corresponding to 0-02% in Q?
Ansr. 0-01 / .
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(4) If the density s of a substance be determined from its weights (w, w^
in air and water, show that

ds w
l

/dw
l

dw\
s
~ w - w\ wl

~
w )'

Note s = w
ll(u-

- wt).

(5) The specific heat of a substance determined by the method of mixtures

is given by the formula

m(6 -
2)

'

where ra is the weight of the substance before the experiment ;
7w

a
the weight

of the water in the calorimeter
;

c the mean specific heat of water between

2 and X ;
is the temperature of the body before immersion ; X

the maximum

temperature reached by the water in the calorimeter ; 2 the temperature of

the system after equalisation of the temperature has taken place. Supposing
the water equivalent of the apparatus is included in m

x , what will the effect

of a small error in the determination of the different temperatures have on the

result ?

First, error in X . Show that

ds/s = -
d0j/(02

-
ej.

If an error of say 0'1 is made in a reading and 2
- O

l
= 10, the error in the

resulting specific heat is about 1
/ . If a maximum error of O'l / is to be per-

mitted, the temperature must be read to the 0*01.

Second, error in 0. Show that

ds/s = dOl(6
-

2).

If a maximum error in the determination of s is to be O'l / ,
when 6- 2

= 50,
6 must be read to the 0'04. If an error of 0'1 is made in reading the tem-

perature and e - 62 50, show that the resulting error in the specific heat

will be 0-2/ .

Third, error in 2 . Show that

ds/s = d02/(02
-

ej + de2/(0
-

2).

If the maximum error allowed is Ol /
and 2

- el
= 10, -

0j
= 50, show

that 2 must be read to the T F ;
while if an error of 0-1 is made in the

reading of 2 ,
show that the resulting error in the specific heat is 0'5 / .

(6) In the preceding experiment, if w
:
= 100 grams, show that the

weighing need not be taken to more than the 0*1 gram for the error in s to be

within O'l / ;
and for m, need not be closer than 0-5 gram when m is about

50 grams.

Since the actual errors are proportional to the probable errors,

the most probable or mean value of the total error dn, is obtained

from the expression

from (16), $ 179, page 444. Note the squared terms are all positive.

Since the errors are fortuitous, there will be as many positive as

negative paired terms. These will, in the long run, approximately

neutralize each other. Hence (3).
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EXAMPLES. (1) Divide equation (8) by n", it is then easy to show that

(dQIQf = (2dC/C)
2 + (dRIRy + (<////),

from the preceding set of examples. Hence show that the fractional error in

Q, corresponding to the fractional errors of 0*03 in C,
-02 in H and 0'03 in t,

is 0-07.

(2) The regular formula for the determination of molecular weight of a

substance by the freezing point method, is M = Kw/0, where A" is a constant,
.17 the required molecular weight, -w the weight of the substance dissolved in

100 grams of the solvent, 6 the lowering of the freezing point. In an actual

determination, w -5139, 6 = -295, K = 19 (Perkin and Kipping's Organic

Clu'mistry), what would be the effect on M of an error of '01 in the deter-

mination of w, and of an error of '01 in the determination of 6 ?

Also show that an error of -01 in the determination of affects M to an

extent of - 3*25, while an error of '01 in the determination of w only affects

^[ to the extent of -19. Hence show that it is not necessary to weigh to more
than O'Ol of a gram. An illustration of the need of "

scientific perspective
'*

in measuring the different components of a composite result.

From (16), 179, page 444, when the effect of each observation

on the final result is the same, the partial differential coefficients are

all equal. If u denotes the sum of n observations, a
lt

a.
2 ,

. . ., an ,

u = a
x + a

2 + . . . + an ,

^u ^u

daj ^a
2

But in order that the actual errors affecting each observation may
be the same,

cZj = da
2
= . . .

= dan
= du/ Jn ;

. . (4)

da, da* dan du 1
from (3), or,

-' - ^ - . . . - - ---^ . (5)

EXAMPLES. (1) Suppose the greatest allowable fractional error in Q
(preceding examples) is 0-5 / , what is the greatest percentage error in each

of the variables C, R, t, allowable under equal effects ? Here,

2dC/C = dR/R = dtjt = -006/ s
;

3.

Ansr. 0-22 for R and t, '11 / for C.

(2) If a volume v of a given liquid flows from a long capillary tube of

radius r and length I in t seconds, the viscosity of the liquid is TJ
= vpr*t/8vl t

where p denotes the excess of the pressure at the outlet of the tube over

atmospheric pressure. What would be the errors dr, di\ dl, dt, dp, necessary

under equal effects to give rj with a precision of -1 / ? Here,

dplp = dt/t = 4dr/r = - dv/v = -
dl/l = -001/ v'S = -00045.

It is now necessary to know the numerical values of p, t, v, r, I, before

dp, dt, . . . can be determined. Thus, if r is about 2 mm., the radius must

be measured to the -0022 mm. for an error of -1 / in TJ.

It has been shown how the best working conditions may be determined by
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a study of the formula to which the experimental results are to be referred.

The following is a more complex example.

(3) The resistance i of a cell is to be measured. Let Clf C2 respectively

denote the currents produced by the cell when working through two known
external resistances i\ and ? 2 , and let Rv R2 ,

be the total resistances of the

circuit, E the electromotive force of the cell is constant. It is known (see

your textbook : Practical Physics),

i = (C2r2
- C^KC^ - C2) (6)

What ratio R
l

: R2 will furnish the best result ? From Ohm's law, E = CR,
E being constant, Cl :C2

= R2 : Rr As usual, (4) above

Find values for 'dil'dC1
and di/9C2 from (7), and put R l

for i\, R.-, for r.2
. Thus,

Substitute this result in (7).

1. If a mirror galvanometer is used, dCl
= dC2

= dC (say) constant.

... (di)
z = (R^R^ - RfRJ) (dC)

2
IE*(Rz - RJ*.

Substitute x = R2 : Rlt

For a minimum error

d

.-. x = 2-2 approx. ; or, R2
- 2-2^ ; or, Cj = 2-2C2 . Substitute these values

in (6),

di = v20 . R* . dCJE,
which shows that the external resistance Rv should be as small as is consistent

with the polarisation of the battery.

2. If a tangent galvanometer is used, dC/C is constant. Hence substitute

C-i
- ER

l
and C2

= ER2 in (8),

From this it can be shown there is no best ratio R : Rr If the last expression

is written

it follows that the error di increases as R
1 increases, and as R., diminishes.

Hence R2 should be made as large and R
l
as small as is consistent with the

range of the galvanometer and the polarisation of the battery.

184. Observations of Different Degrees of Accuracy.

Hitherto it has been assumed that the individual observations

of any particular series, are equally reliable, or that there is no

reason why one observation should be preferred more than an-

other. As a general rule, measurements made by different

methods, by different observers, or even by the same observer at
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dil'lerent times,* are not liable to the same errors. Some results

11. more trustworthy than others. In order to fix this idea,

suppose that twelve determinations of the capacity of a flask by
tlif same method, gave the following results: six measurements

each 1'6 litres; four, 1-4 litres; and two, 1/2 litres. The numbers

6, 4, 2, represent the relative values of the three results 1-6, 1-4,

1-2, because the measurement 1*6 has cost three times as much
labour as 1*2. The former result, therefore, is worth three times

as much confidence as the latter. In such cases, it is customary
to say that the relative practical value, or the weight of these three

sets of observations is as 6:4:2, or, what is the same thing, as

3:2:1. In this sense, the weight of an observation, or set of

observations, represents the relative degree of precision of that

observation in comparison with other observations of the same

quantity. 'It tells us nothing about the absolute precision (h) of

the observations.

It is shown below that the weight of an observation is, in

theory, inversely as its probable error
;

in practice, it is usual to

assign arbitrary weights to the observations. For instance, if one

observation is made under favourable conditions, another under

adverse conditions, it would be absurd to place the two on the

same footing. Accordingly, the observer pretends that the best

observations have been made more frequently. That is to say,

if the observations a
lf

a.2 ,
. . ., a,,, have weights p^ p.2 ,

. . ., pn,

respectively, the observer has assumed that the measurement a
l

has been repeated p l
times with the result a

lt
and that a,, has been

repeated p tl
times with the result an .

To take a concrete illustration, Morley has made three accurate

series of determinations of the density of oxygen gas with the

following results :

I. 1-42879 -000034; II. 1 -42887 "000048; III. 1 -4291 7 '000048.

(" On the densities of oxygen and hydrogen and on the ratio of

*
I am reminded that Dumas, discussing the errors in his great work on the gravi-

metric composition of water, alluded to a few pages back, adds the remarks :

" The

length )t' time required for these operations compelled me to prolong the work far into

the night, generally finishing with the weighings about 2 or 3 o'clock in the morniiu.

This may be the cause of a substantial error, for I dare not venture to assert that >urh

weighings deserve as much confidence as it they had been performed under more

favourable conditions and by an observer not so worn out with fatigue, the inevitable

result of fifteen to twenty hours continued attention."
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their atomic weights," Smithsonian Contributions to Knowledge ^

(980), p. 55, 1895.) The probable errors of these three means

would indicate that the first series were worth more than the

second. For experimental reasons, Morley preferred the last

series, and gave it double weight. In other words, Morley pre-

tended that he had made four series of experiments, two of which

gave 1-42917, one gave 1-42879, and one gave 1-42887. The result

is that 1-42900, not 1-42894,* is given as the best representative

value of the density of oxygen gas.

The product of an observation or of an error with the weight
of the observation, is called a weighted observation, or a weighted
error as the case might be.

The practice of weighting observations is evidently open to

some abuse. It is so very easy to be influenced rather by the differ-

ences of the results from one another, than by the intrinsic quality

of the observation. This is a fatal mistake.

1. The best value to represent a number of observations of equal

weight, is their arithmetical mean.

If P denotes the most probable value of the observed magnitudes a^ <i.2r

. . ., n ,
then P - a

lt
P - a2 , . . ., P - an , represent the several errors in the

n observations. From the principle of least squares these errors will be a.

minimum when

(P -
Oj)

2 + (P -
2)

2 + +
(
p ~

n)
2 = a minimum.

Hence, page 434, P =
(a^ + a2 + . . . + an)jn, . . . . (1^

or the best representative value of a given series of measurements of an un-

known quantity, is the arithmetical mean of the n observations, provided that

the measurements have the same degree of confidence.

2. The best value to represent a number of observations of

different weight, is obtained by multiplying each observation by its

weight and dividing the sum of these products by the sum of their

different weights.

With the same notation as before, let p^ p*, . . ., pn ,
be the respective

weights of the observations a
lt 2 ,

. . ., an . From the definition of weight,

the quantity a
x may be considered as the mean of pl

observations of unit

weight ; 2 ,
the mean of p% observations of unit weight, etc. The observed

quantities may, therefore, be resolved into a series of fictitious observations-

all of equal weight. Applying the preceding rule to each of the resolved

observations, the total number of standard observations of unit weight will

* See formula (5).
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bo /, + />+...+ )> ; the sum of the
;>, standard observations of unit weight

v.ill be /v/, ; the sum of
/>.2 standard observations, p.fa, etc. Hence, from (1),

the most probable value of a series of observations of different, weights is

] = P^a^ + /*a + . . . + pnan /2\

Pi + Pt + + Pn
Note the formal resemblance between this formula and that for finding the

centre of gravity of a system of particles of different weights arranged in a

straight line.

Weighted observations are, therefore, fictitious results treated

as if they were real measurements of equal weight. With this

convention, the value of P' in (2) is an arithmetical mean some-

times called the general or probable mean.

3. The weight of an observation is inversely as the square of its

probable error.

Let a be a set of observations whose probable error is R and whose weight
is unity. Let 2hi P& Pn an<i ru r2 >

?
' ^e ^e respective weights and

probable errors of a series of observations rt
lf 2 , . . ., a,,, of the same quantity.

By definition of weight, a
x

is equivalent to i\ observations of equal weight.

From (16), page 444,

r,
= El v^ ; or, Pl

EXAMPLES. (1) If n observations have weights p p& ., pnt show that

Differentiate (2) successively with respect to j, ,,,... and substitute the

results in (16), page 444.

(2) Show that the mean error of a series of observations of weights p^ p.2t

,>.., is

Hint. Proceed as in 178 but use px2 and pv
z in place of .t

2 and y2 respectively,

If the sum of the weights of a series of observations is 2(/>)
= 40, and the sum

of the products of the weights of each observation with the square of its

deviation from the mean of nine observations is 2(px
2
)
= '3998, show that

M = 0-035.

(3) The probable errors of four series of observations are respectively 1-2,

0-8, 0-9, 1-1, what are the relative weights of the corresponding observations?

Ansr. 7 : 16 : 11 : 8. Use (3).

(4) Determinations of the percentage amount of copper in a sample of

malachite were made by a number of chemical students, with the following

results : (1) 39-1
; (2) 38-8, 38'7, 38-6 ; (3) 39-9, 39-1, 39-3 ; (4) 37'7, 37'9. If

these analyses had an equal degree of confidence, the mean, 38-8, would best

represent the percentage amount of copper in the ore formula (1). But the

analyses are not of equal value. The first was made by the teacher. To this

we may assign an arbitrary weight 10. Sets (2) and (3) were made by two

GG
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different students using the electrolytic process. Student (2) was more ex-

perienced than student (3), in consequence, we are led to assign to the former

an arbitrary weight 6, to the latter, 4. Set (4) was made by a student pre-

cipitating the copper as CuS, roasting and weighing as CuO. The danger
of loss of CuS by oxidation to CuSO during washing, leads us to assign to

this set of results an arbitrary weight 2. From these assumptions, show that

38-94 best represents the percentage amount of copper in the ore. For the

sake of brevity use values above 37 in the calculation. From formula (2),

108-8/56 = 1-94. Add 37 for the general mean.

It is unfortunate when so fantastic a method has to be used for calculating

the most probable value of a " constant of Nature," because a redetermination

is then urgently required.

(5) Rowland (Proc. Amer. Acad., 15, 75, 1879) has made an exhaustive

study of Joule's determinations of the mechanical equivalent of heat, and

he believes that Joule's several values have the weights here appended in

brackets: 442-8 (0); 427'5 (2); 426-8 (10); 428-7 (2); 429-1 (1); 428-0 (1) ;

425-8 (2) ; 428-0 (3) ; 427-1 (3) ; 426-0 (5) ; 422-7 (1) ;
426-3 (1). Hence Rowland

concludes that 426-9 best represents the result of Joule's work. Verify this.

Notice that Rowland rejects the number 442-8 by giving it zero weight.

4. To combine several arithmetical means each of which is affected

.with a known probable (or mean) error, into one general mean.

One hundred parts of silver are equivalent to

49*5365 -013 of NH^Cl, according to Pelouze ;

49-523 -0055 Marignac ;

49-5973 -0005 Stas (1867) ;

49-5992 + '00039 Stas (1882),

^where the first number represents the arithmetical mean of a series

of experiments, the second number the corresponding probable

error. How are we to find the best representative value of this

series of observations? The first thing is to decide what weight

shall be assigned to each result. Individual judgment on the

"internal evidence" of the published details of the experiments

is not always to be trusted. Nor is it fair to assign the greatest

weight to the last two values simply because they are by Stas.

Meyer and Seubert, in a paper Die Atomgewichte der Elements,

aus der Originalzahlen neu berechnet (Leipzig, 1883), weighted

each result according to the mass of material employed in the

determination. They assumed that the magnitude of the errors

of observation were inversely as the quantity of material treated.

That is to say, an experiment made on 20 grams of material is

supposed to be worth twice as much as one made on 10 grams.

This seems to be a somewhat gratuitous assumption.
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One way of treating this delicate question is to assign to each

arithmetical mean a weight inversely as the square of its mean
error. Clark in his " Recalculation of the Atomic Weights

"

(Smithsonian Miscellaneous Collections (1075), 1897) employed
the probable error. Although this method of weighting did not

suit Morley in the special case mentioned on page 463, Clark

considers it a safe, though not infallible guide.

Let A, B, C, . . ., be the arithmetical mean of each series of

experiments ; a, b, c, . . ., the respective probable (or mean) errors,

then, from (2),

A_
B

C_

a2 62 c2
General Mean

Probable Error = +

(5)

EXAMPLES. (1) From the experimental results just quoted, show that

the best value for the ratio

Ag : NH4Cl is 100 : 49-5983 -00031.

Hint. Substitute A = 49-5365, a = -013
;
B = 49 '523, b = -0055 ; C = 49-5973,

c = -0005
;
D = 49-5992, d = -00039, in equations (5).

(2) The following numbers represent the most trustworthy results yet pub-

lished for the atomic weight of gold (H = 1) : 195-605 -0099 ; 195-711 '0224 ;

195-808 -0126; 195-624 -0224; 195-896 '0131 ; 195-770 -0082. Hence

show that the best representative value for this constant is 196'743 -0049.

(3) In three series of determinations of the vapour pressure of water

vapour at Regnault found the following numbers :

I. 4-54; 4-54; 4-52; 4-54; 4-52; 4-54; 4 '52 ;
4'50

; 4-50; 4-54.

II. 4-66 ; 4-67 ; 4-64
;
4-62 ; 4-64

;
4-66 ; 4-67 ; 4-66 ;

4-66.

III. 4-54; 4-54; 4-54; 4-58 ; 4-58; 4-57; 4-58.

Show that the best representative value of series I. is 4-526, with a probable

error 0-0105 ; series II., 4-653, probable error + 0-0105 ;
series III., 4-561,

probable error 0-0127. The most probable value of the vapour pressure of

aqueous vapour at is, therefore, 4-582, with an equal chance of its possessing

an error greater or less than -0064.
" As a matter of fact the theory of probability is of little or no importance,

when the * constant
'

errors (otherwise known as '

systematic
'

errors) are

greater than the accidental errors. Still further, this use of the probable

error cannot be justified, even when the different series of experiments are

only affected with accidental errors, because the probable error only shows how

UNIFORMLY an experimenter JMS conducted a certain process, and not how

suitable that process is for tJie required purpose. In combining different se^s

of determinations it is still more unsatisfactory to calculate the probable
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error of the general mean by weighting the individual errors according to

Clark's criterion when the probable errors differ very considerably among
themselves. For example, Clark (I.e., page 126) deduces the general mean
136-315 + -0085 for the atomic weight of barium from the following results :

136-271 -0106 ; 136-390 -0141
; 135-600 -2711 ; 136-563 -0946.

The individual series here deviate from the general mean more than the

magnitude of its probable error would lead us to suppose. The constant

errors, in consequence, must be greater than the probable errors. In such a

.ease as this, the computed probable error + -0085 has no real meaning, and

we can only conclude that the atomic weight of barium is, at its best, not

known more accurately than to five units in the second decimal place."

(Paraphrased from Ostwald's critique on Clark's work (I.e.) in the Zeitschrift

fur physikalisclie Chemie, 23, 187, 1897.)

5. Mean and probable errors of observations of different degrees

of accuracy.

In a series of observations of unequal weight the mean and probable errors

of a single observation of unit weight are respectively

3k
- (6)

The mean of a series of observation of unequal weight has the respective

mean and probable errors

EXAMPLE. An angle was measured under different conditions fourteen

times. The observations all agreed in giving 4 15', but for seconds of arc

the following values were obtained (the weight of each observation is given in

brackets) : 45"-00 (5) ;
31 "-'25 (4) ;

42"-50 (5) ;
45"-00 (3) ; 37"-50 (3) ;

38"-33 (3) ;

27"-50 (8) ; 43"'33 (3) ;
40"-63 (4) ;

36"-25 (2) ; 42"-50 (3) ; 39"-17 (3) ;
45"-00 (2) ;

40"-83 (3). Show that the mean error of a single observation of unit weight
is 9"'475, the mean error of the mean 39"-78 is l"-397. Hint. 2(p) = 46 ;

= 1167-03 ;
n = 14

; 2(pa = 1830-00.

The mean and probable errors of a single observation of weight p are

respectively.

EXAMPLE. In the preceding example show that the mean error of an

observation of weight (2) is 6"-70 ;
of weight (3) is + 5"-47 ; of weight (4)

4"-74 ;
and of weight (5) 4"-24.

6. The principle of least squares for observations of different

degrees of precision states that ''the most probable values of the

observed quantities are those for which the sum of the weighted

squares of the errors is a minimum," that is,

p-fv-f + p2
2v

2
2 + . . . + pn

2vn
2 = a minimum.
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An error v is the deviation of an observation from the arithmetical

mean of n observations
;
a "

weighted square
"

is the product of

the weight p and the square of an error v (see 106).

185. Observations Limited by Conditions.

On adding up the results of an analysis, the total weight of the

constituents ought to be equal to the weight of the substance itself ;

the three angles of a plane triangle, must add up to exactly 180 ;

the sum of the three angles of a spherical triangle always equal
180 + the spherical excess ;

the sum of the angles of the nor-

mals on the faces of a crystal in the same plane must equal 360 .

Measurements subject to restrictions of this nature, are said to

be conditioned observations. The number of conditions to be

satisfied is evidently less than the number of observations, other-

wise the value of the unknown could be deduced from the

conditions, without having recourse to measurement.

In practice, measurements do not come up to the required

standard, the percentage constituents of a substance do not add

up to 100
;
the angles of a triangle are either greater or less than

180. Only in the ideal case of perfect accuracy are the conditions

fulfilled. It is sometimes desirable to find the best representative

values of a number of imperfect conditioned observations. The

method to be employed is illustrated in the following examples.

EXAMPLES. (1) The analysis of a compound gave the following results :

37-2 / of carbon, 44-1% of hydrogen, 19-4 /
of nitrogen. Assuming each

determination is equally reliable, what is the best representative value of the

percentage amount of each constituent ? Let C, H, N, respectively denote

the percentage amounts of carbon, hydrogen, and nitrogen required, then,

C + tf = 100 - 2VEE 100 - 19-4 = 80-6.

Hence, 2C + H = 117-8 ; C + 2H = 124-7.

Solve the last two simultaneous equations in the usual way. Ansr. C = 36-97 / ;

H= 43-86 / ; N= 19-17 / . Note that this result is quite independent of

any hypothesis as to the structure of matter. The chemical student will

know a better way of correcting the analysis. This example will remind us

how the atomic hypothesis introduces order into apparent chaos. Some

analytical chemists before publishing their results, multiply or divide their

percentage results to get them to add up to 100. In some cases, one consti-

tuent is left undetermined and then calculated by difference. Both practices

are objectionable in exact work.

(2) The three angles of a triangle A, B, C, were measured with the result

that .4 = 51 ; B = 94 20' ; C = 34 56'. Show that the most probable values

of the unknown angles are A = 51 56' ;
B = 94 12' ; C = 34 52'.
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(3) The angles between the normals on the faces of a cubic crystal were

found to be respectively a = 91 13' ;
= 89 47' ; y = 91 15' ;

5 = 89 42'.

What numbers best represent the values of the four angles ? Ansr. a = 90

43' 45" ;
= 89 17' 45" ; 7 = 90 0' 45" ; 5 = 89 57' 45".

(4) The three angles of a triangle furnish the respective observation

equations :

A = 36 25' 47"
;
B = 90 36' 28"

;
C = 52 57' 57" ;

the equation of condition requires that

A + B + C - 180 =
(1)

Let #!, a?2 ,
xs , respectively denote the errors affecting A, B, C, then we must

have
x

l + x2 + xs
= - 12 (2)

i. If the observations arc equally trustworthy,

Xi = x2
= x3

= k, (3)

say. Substitute this value of x
lt
x2 ,

xst in (2), and we get

3k + 12 =
; or, k = - 4

;

.-. A = 36 25' 43"
;
B = 90 36' 24"

;
C = 53 57' 53".

The formula for the mean error of each observation is

J. *<*>
Mn - w +

where w denotes the number of unknown quantities involved in the n ob-

servation equations ; q denotes the number of equations of condition to be

satisfied. Consequently the w unknown quantities reduce to w -
q inde-

pendent quantities. 2(v
2
)
denotes the sum of the squares of the differences

between the observed and calculated values of A, B, C. Hence, the mean

error = + \/48 = 6" -93.

ii. If tlie observations have different weights. Let the respective weights
of A, B, C, be pl

= 4
; pz

= 2
; ps

= 3. It is customary to assume that the

magnitude of the error affecting each observation will be inversely as its

weight. (Perhaps the reader can demonstrate this principle for himself.)

Instead of (3), therefore, we write

x
l
= k; x.2

= k xs
= $k..... (5)

From (2), therefore,

13fc + 144 =
;
k = - 11-07 ;

x
1
= - 2"-77 ;

x
>2
= - 5"-54

;
x

:
, = - 3"'69.

, = Mean error = __, ... (6)

or in = 11-52.

The mean errors m^, ; 2 ,
w3 , respectively affecting a, 6, c, are

m in in
ni.=+

, ; iito = +-._; m, = + T-. . . (7)-
x^'

-
xy " - jp

Hence

.4=36 25' 44"-235"-76; 5= 90 36' 22"-468"-15
; C = 52 57' 53"'316"'65.

It is, of course, only permissible to reduce experimental data in

this manner when the measurements have to be used as the basis

for subsequent calculations. In every case the actual measure-

ments must be stated along with the " cooked
"

results.



$ ISO. l'R<>P>AinUTY AM) TIIK TIIKniiV OF BBBOBE 17!

186. Gauss' Method of Solving a Set of Linear Observation

Equations.

In continuation of 106, let x, y, z, represent the unknowns to be

evaluated, and let a
lt

a.
2 ,

. . .,b l ,b.2 ,
. . .,c lt

c.
2 ,

. . ., /i',, //,, . . .,

represent actual numbers whose values have been determined by
the series of observations set forth in the following observation

equations :

a>2x + b
2y + c,

2
z = R

2

a.jK + b
zy + c

z
z = \R3 ;

I

ax + by + cz = R
4

. J

If only three equations had been given, we could easily calculate

the corresponding values of x, y, z, by the method of 165, but

these values would not necessarily satisfy the fourth equation.

The problem here presented is to find the best possible values of

x, y, z, which will satisfy the four given observation equations.

We have selected four equations and three unknowns for the sake

of simplicity and convenience. Any number may be included in

the calculation. But sets involving more than three unknowns are

comparatively rare.

We also assume that the observation equations have the same

degree of accuracy. If not, multiply each equation by the square

root of its weight, as in example (3) below. This converts the

equations into a set having the same degree of accuracy.

First. To convert the observation equations into a set of normal

equations solvable by ordinary algebraic processes.

Multiply the first equation by a
lt

the second by a.,, the third by

a
3 ,

and the fourth by 4
. Add the four results. Treat the four

equations in the same way with b
lt

b.
2 ,

b.
3 ,

6
4 ,
and with c

lf
c
2 , c

3 ,
c
4

.

Now write, for the sake of brevity,

[aa\
=V + a* + o

s
2 + a

4
2

; [bb],
=

b,- + b^ +V + b*
;

aj = a
ljj + a22 + a3 ^ + a

4

and likewise for [cc]v [bc]^ [cR]r The resulting equations are

[aa\x + [ab\y + [ac\z
= [aR\ ;

j

[db\x + [bb]iy + \bc\z
= [bB^ ;

-
. . (2)

[c]> + [be]# + [cc]>
=

[cR]r \

These three equations are called normal equations (first set) in

x, y, z.
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Second. To solve the normal equations. We can determine

the values of x, y, z, from this set of simultaneous equations (2) by

any method we please, determinants
( 165), cross-multiplication,

indeterminate multipliers, or by the method of substitution.* The

last method is adopted here.

Solve the first normal equation for x, thus,

[oH \ac^ [oB],- - h

Substitute this value of x in the other two equations for a second

set of normal equations in which the term containing x has dis-

appeared.

For the sake of simplicity, write

[bb], =

, = [WZ],
-

The second set of normal equations may now be written :

[bc^y + [cc] 2
=

[cB]2
.

Solve the first of these equations for y,

Substitute this in the second of equations (4), and we get a third

set of normal equations,

which may be abbreviated into

[cc],z
=

[cR],. . (6)

Hence, z = [^..... (7)OL
, [6c]2 ,

. . ., [cc] 3 ,
. . . are called auxiliaries.

* The equations cannot be solved if any two are identical, or can be made identical

by nrmltiplying through with a constant.
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Equations (3), (5), (7), collectively constitute a set of elimination

equations :

1

[<*],'

z =~

The last equation gives the value of z directly ;
the second gives

the value of y when z is known, and the first equation gives the

value of x when the values of y and 2 are known.

Note the symmetry of the coefficients in the three sets of normal

equations. Hence it is only necessary to compute the coefficients

of the first equation in full. The coefficients of the first horizontal

row and vertical column are identical. So also the second row and

second column, etc.

The formation and solution of the auxiliary equations is more

tedious than difficult. Several schemes have been devised to lessen

the labour of calculation as well as for testing the accuracy of the

work. These we pass by.

Third. The weights of the values of x, y, z. Without entering

into any theoretical discussion, the respective weights of z, y, and x,

are given by the expressions :

\bb\j [calJftftlo
p. - M. ; ,. - P.LJI ; ,, . tfaffSfa&R

.

Fourth. The mean errors affecting the values of x, y, z. Let

ax + b + cz - E = v ;

Let M denote the mean error of any observed quantity of unit

weight,

M=J-2-L for equal weight ;

~^n-w
v t (1Q)

.V = + /
2(F1

''-) for unequal weights, I"
\ n - iv

where n denotes the number of observation equations, w the number

of quantities x, y, z, . . . Here, w = 3, n = 4. Let Mx , M^ Mt ,

respectively denote the mean errors respectively affecting x, y, z.
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EXAMPLES. (1) Find the values of the constants a and b in the formula

y = a + bx, (12).

from the following determinations of corresponding values of x and y :

y = 3-5, 5-7, 8-2 10-3, . . .;

when x = 0, 88, 182, 274, . . .
;

We want to find the best numerical values of a and b in equations (12). Write

x for a, and y for 6, so as to keep the calculation in line with the preceding
discussion. The first set of normal equations is obviously

[aa\x + \ab\y = \aR\ ;
and [ab\x + \bb\y = \bE\.

But ..-HSkr + Baj-...^!^
loaf* [oak' [66V

Again, \aa\ = 4
; \bb\ = 115,944 ; [ab\ = 544

; [aR\ = 27*7 ; [bR\ = 4,816-2 ;

[bb\ = 4,853-67 ; \bR\ = 115,951-4.

x = 3-52475 ; ij
= 0-02500 ;

or, reconverting x into a, and y into b, (12) is to be written,

y = 3-525 + 0-025?.

b.

(t
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By the rule, multiply the last equation by %/f = and we get set (13). Show
that x = + 2-47 with a weight 24-6 ; y = + 3-55 with a weight 13-6 ; and

z = + 1-9 with a weight 53-9. It only remains to substitute these values of

x, y, z, in (14) to find the residuals r. Hence show that M = + 295. Proceed

as before for Afx ,
My ,
Mt.

(4) The length (1)
of a seconds pendulum at any latitude />, is given by

Clairaut's equation :

I = L + A sin2!/,

where L n and A are constants to be evaluated from the following observa-

tions :

L = 0', 18 27', 48 24', 58 15', 67 4'
;

I = 0-990564, 0-991150, 0-993867, 0-994589, 0*995325.

Hence show that

I = 0-990555 + 0-005679 sin2 .

Hint. The normal equations are,

x + 0-44765 y = 0-993099 ;
x + 0-70306 y = 0-994548.

The above is based on the principle of least squares. A quicker method,
not so exact, but accurate enough for most practical purposes, is due to Mayer.
We can illustrate Mayer's method by means of equations (13).

First make all the coefficients of x positive, and add the results to form a

new equation in x. Similarly for equations in
ij and z. We thus obtain,

9x - y - iz = 15 ;

j

5x + 7y =37;}- (15)

.,; + y + UZ = 33. )

Solve this set of simultaneous equations by algebraic methods and we get

x = 2-485; y = 3*511 ;
z = 1-929. Compare these values of x, y, z, with the

best possible values for these magnitudes obtained in example (2).

187. When to Reject Suspected Observations.

There can be no question about the rejection of observations

which include some mistake, such as a wrong reading of the

eudiometer or burette, a mistake in adding up the weights or a

blunder in the arithmetical work, provided the mistake can be

detected by check observations or calculations. Sometimes a

most exhaustive search will fail to reveal any reason why some

results diverge in an unusual and unexpected manner from the

others. It has long been a vexed question how to deal with

abnormal errors in a set of observations, for these can only lu>

conscientiously rejected when the mistake is perfectly obvious.

It would be a dangerous thing to permit an inexperienced or

biassed worker to exclude some of his observations simply because

they do not fit in with the majority.
" Above all things," said
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the late Prof. Holman in his Discussion on the Precision of Mea-

surements (Wiley & Sons, New York, 1901), "the integrity of the

observer must be beyond question if he would have his results

carry any weight, and it is in the matter of the rejection of doubt-

ful or discordant observations that his integrity in scientific or

technical work meets its first test. It is of hardly less importance
that he should be as far as possible free from bias due either to

preconceived opinions or to unconscious efforts to obtain concordant

results."

Several criteria have been suggested to guide the investigator

in deciding whether doubtful observations shall be included in the

mean. Such criteria have been deduced by Chauvenet, Hagen,

Stone, Pierce, etc. None of these tests, however, is altogether

satisfactory. Chauvenet's criterion is perhaps the simplest to

understand and most convenient to use. It is an attempt to

show, from the theory of probability, that reliable observations

will not deviate from the arithmetical mean beyond certain

limits.

From (2) and (6), 178,

r = 0-4769//i = 0-6745 \^(v
2
)f(n

-
1).

If x = rt, where rt represents the number of errors less than x which may be

expected to occur in an extended series of observations when the total number
of observations is taken as unity, r represents the probable error of a single

observation. An}- measurement containing an error greater than ,r is to be

rejected. If n denotes the number of observations and also the number of

errors, then nP indicates the number of errors less than rt, and n(l
- P) the

number of errors greater than the limit rt. If this number is less than ^, any
error rt will have a greater probability against than for it, and, therefore,

may be rejected.

The criterion for the rejection of a doubtful observation is, therefore,

xfr = t
;

=
ra(l

-
P) ;

271-1 2 it

whence P = =r -=r I e~ * dt (1)
\irJ o

By a successive application of these formulae, two or more doubtful results

may be tested.

The value of t, or, what is the same thing, of P, and hence also of n, can

be read off from the table of integrals, page 515 (Table XI.). Table XII. con-

tains the numerical value of xfr corresponding to different values of n.

EXAMPLES. (1) The result of 13 determinations of the atomic weight of

oxygen made by the same observer is shown in the first column of the sub-

joined table. Should 19-81 be rejected ? Calculate the other two columns of

the table in the usual way.
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Observation.
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He has no more right to suppress its evidence under the pretence that

it vitiates the other observations than he has to shape it into con-

formity with the majority." The whole theory of errors is founded

on the supposition that a sufficiently large number of observations

has been made to locate the errors to which the measurements

are susceptible. When this condition is not fulfilled, the abnormal

measurement, if allowed to remain, would exercise a dispropor-

tionate influence on the mean. The result would then be less

accurate than if the abnormal deviation had been rejected. The

employment of the above criterion is, therefore, permitted solely

because of the narrow limit to the number of observations. It is

true that some good observations may be so lost, but that is the

price paid to get rid of serious mistakes.

It is perhaps needless to point out that a suspected observation

may ultimately prove to be a real exception requiring further

research. To ignore such a result is to reject the clue to a new

truth. The trouble Lord Eayleigh recently had with the density of

nitrogen prepared from ammonia is now history. The " ammonia "

nitrogen was found to be i^oo^h Par* lighter than that obtained

from atmospheric air. Instead of putting this minute " error
" on

one side as a "suspect," Lord Eayleigh persistently emphasised
the discrepancy, and thus opened the way for the brilliant work of

Eamsay and Travers on "
Argon and Its Companions ".
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CHAPTER XII.

COLLECTION OF FORMULAE FOR REFERENCE.

188. Laws of Indices and Logarithms.

THE average student of chemical science is compelled to take a

course in pure mathematics. But after passing his "
intermediate,"

all is forgotten except a strong prejudice that mathematics is a

compilation of vexatious puzzles. This is to be regretted, because

with very little, if any, more drilling the later chapters of mathe-

matics would be found invaluable auxiliaries in the inquiry into

those very phenomena to which he subsequently devotes his

attention.

Certain sections of this chapter have been written to give the

student of this work the opportunity of revising some of the more

fundamental principles established in elementary mathematics ;

other sections are only for reference upon special occasions.

To continue the discussion opened at the commencement of

16, page 34,

4x4= 16, is the second power of 4, written 4- ;

4x4x4= 64, is the third power of 4, written 43
;

4x4x4x4 = 256, is the fourth poiver of 4, written 44 ;

and in general, the nth power of any number a, is denned as the

continued product
a x a x a x ... n times = a",

where n is called the exponent or index of the power.

By actual multiplication, therefore,

102 x 10s = 102 + 3 = HP = 100,000 ;

or, in general symbols,
am x a" = a'* + "

; or, a' x a" x a: x . . .
= a{* + '+

',

a result known as the index law. Again,

3x5 = (10
'

4
"

1

)
x (lO

'

0990
)
= 10 1

'

1701 - 15,

because, from a table of common logarithms,

Iog103 = 0-4771 ;
logl(J5 = 0-6990; Iog10

15 = M7UL
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Thus we have performed arithmetical multiplication by the simple
addition of two logarithms. To generalise :

To multiply two or more numbers, add the logarithms of
the numbers and find the number whose logarithm is the sum of the

logarithms just obtained.

EXAMPLES. (1) Evaluate 4 x 80.

Iog10 4 = 0-6021

Iog1080 = 1-9031

Sum = 2-5052 = Iog10320.

.-. Ansr. = 320.

This method of calculation holds good whatever numbers we employ in place-

of 3 and 5 or 4 and 80. Hence the use of logarithms for facilitating numerical

calculations. We shall shortly show how the operations of division, involu-

tion, and evolution are as easily performed as the above multiplication.

(2) Show logee = 1, logel = 0.

Just as 1 = 10, 2 = 10
'301

, 3 = 10'477
,

. . . ;

so is 1 = c, 2 = e-69-'2
,
3 - e1>W86, . . .

;

where e 2-71828 . . . Hence by the definition of logarithms,

Ioge3 = 1-0986 ; Ioge2 = 0-6932 ; logel = 0.

Again
e x e x e x . . . n times = en

; . . . ; e x e x e = e* ; e x e = e2 ; e = e l
;

or loge
n = n\ . . .

; logeC
:J = 3 ; loget'

2 = 2
; log^

1 = 1 =

From the above it also follows that

* -2 = 10
;
or generally, .

Hence the rule :

To divide two numbers, subtract the logarithm of the divisor

(denominator of a fraction) from the logarithm of the dividend

(numerator of a fraction) and find the number corresponding to the

resulting logarithm.

EXAMPLES. (1) Evaluate 60 4- 3.

Iogin60 = 1-7782

Difference = 1-3011 = Iog1020.

Ansr. = 20.

(2) Show that 2
~ 2 =

;
10

- 2 = T^ ;
3* x 3

~ 3 = 1.

It is very easy to miss the meaning of the so-called
"
properties

of indices," unless the general symbols of the textbooks are

thoroughly tested by translation into numerical examples. The

majority of students require a good bit of practice before a general
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expression
*

appeals to them with full force. Here, as elsewhere,

it is not merely necessary for the student to think that he " under-

stands the principle of the thing," he must actually work out

examples for himself. " In scientiis ediscendis prosunt exempla

magis quam prsecepta
"
f is as true to-day as it was in Newton's

time. For example, how many realise why mathematicians write

e = 1, until some such illustration as the following has been

worked out?

22 x 2 = 22 + = 22 = 4.

The same result, therefore, is obtained whether we multiply 22
by

2 or by 1, i.e.,

22 x 2 = 22 x 1 = 22 = 4.

Hence it is inferred that

2 = 1, and generally that a =
l.J

I am purposely using the simplest of illustrations, leaving the

reader to set himself more complicated numbers. No pretence is

made to rigorous demonstration. We assume that what is true in

one case, is true in another. It is only by so collecting our facts

one by one that we are able to build up a general idea. The be-

ginner should always satisfy himself of the truth of any abstract

principle or general formula by applying it to particular and simple

cases.

By actual multiplication show that

(100)
3 = (10

2
)

8 = 102X3 = 106
,

and hence :

To raise a number to any power, multiply the logarithm of

the number by the index of the power and find the number corre*

spending to the resulting logarithm.

* The general symbols a, b, . . . m, n, . . . x, y, . . . in any general expression

may be compared with the blank spaces in a bank cheque waiting to have particular

values assigned to date, amount
(

s. d.), and sponsor, before the cheque can fulfil the

specific purpose for which it was designed. So must the symbols, a, 6, ... of a

general equation be replaced by special numerical values before the equation can be

applied to any specific process or operation.

f Which may be rendered: "In learning we profit more by example than by

precept".

$ Some mathematicians define a'aslxaxaxa. . . n times
;
a'= 1 x a x a x a ;

a2 = 1 xaxa;a1 = lxa; and a as 1 x a no times, that is unity itself. If so, then

would mean 1 x no times, i.e., 1
; 1/0 would mean 1/(1 x no times), i.e., unity.

But see examples, 5.

HH



482 HIGHER MATHEMATICS. 188.

EXAMPLE. Evaluate 52 .

o2 = (5)
2 = (10

If5990

)

2 = 101 '3980 = 25,

since reference to a table of common logarithms shows that

Iog105 = 0-6990 ; Iog1025 = 1-3980.

From the index law, above

10* x 10* = 10* + * = 10 1 = 10.

That is to say, 10* multiplied by itself gives 10. But this is the

definition of the square root of 10.

.-.
( VK))2 = VlO x x/10 = 10* x 10* = 10.

A fractional index, therefore, represents a root of the particular
number affected with that exponent. Generalising this idea, the

nth root of any number a, is a. Thus

#8 = 8*, because /8 x ?/8 x ^8 = 8* x 8* x 8* = 8.

To extract the root of any number, divide the logarithm of
the number by the index of the required root and find the number

corresponding to the resulting logarithm.

EXAMPLES. (1) Evaluate 4/8 and ^93".

4/8 = (8p = (I0
>9031p = 10

'3010 = 2
;

v 93 = (93)* = (I0
1>968y = 10

'2812 = 1-91,

'since, from a table of common logarithms,

Iog102 = 0-3010 ; Iog108 = 0-9031 ; Iog10
l-91 = 0-2812

; Iog1093 = 1-9685.

(2) Repeat all the above illustrations of the index law using Table XXIV.,

page 520.

The results of logarithmic calculations are seldom absolutely

correct because we employ approximate values of the logarithms

of the particular numbers concerned. Instead of using logarithms
to four decimal places we could, if stupid enough, use logarithms

accurate to sixty-four decimal places. But this question is reserved

for the next section.

The more important properties of indices known under the name
" the theory of indices

"
are summarised in the subjoined synopsis

along with the corresponding properties of logarithms.
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Theory of Indices.
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for suppressing the last decimals, for, if the first are wrong, the

last may be all right
"

!

Although the measurements of a Stas, or of -a Whitworth may
require six or eight decimal figures, few observations are correct

to more than four or five. But even this degree of accuracy is

only obtained by picked men working under special conditions.

Observations which agree to the second or third decimal place are

comparatively rare in chemistry.

Again, the best of calculations is a more or less crude approxi-

mation on account of the ''simplifying assumptions" introduced

when deducing the formula to which the experimental results

are referred. It is, therefore, no good extending the " calculated

results
"
beyond the reach of experimental verification. It is un-

profitable to demand a greater degree of precision from the calcu-

lated than from the observed results but one ought not to demand

a less. (Compare the introduction to Poincare's Mecanique Celeste.)

The general rule in scientific calculations is to use one more

decimal figure than the degree of accuracy of the data. In other

words, reject as superfluous all decimal figures beyond the. first

doubtful digit. The remaining digits are said to be significant

figures.

EXAMPLES. In 1-540, there are four significant figures, the cypher indi-

cates that the magnitude has been measured to the thousandth part ;
in

0-00154, there are three significant figures, the cyphers are added to fix the

decimal point; in 15,400, there is nothing to show whether the last two

cyphers are significant or not, there may be three, four, or five significant

figures.

In "
casting off" useless decimal figures, the last digit retained

must be increased by unity when the following digit is greater

than four. We must, therefore, distinguish between 9-2 when

it means exactly 9*2, and when it means anything between 9'14

and 9-25. In the so-called " exact sciences," the latter is the

usual interpretation. Quantities are assumed to be equal when

the differences fall within the limits of experimental error.

LOGARITHMS. There are very few calculations in practical work outside

the range of four or five figure logarithms. The use of more elaborate tables

may, therefore, be dispensed with.*

* Thus Wrapson and Gee's Mathematical Tables (Is. 6d.
)
to four decimal places

may be used instead of Chamber's (page 37) to seven decimal places.
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ADDITION AND SUBTRACTION. In adding .such numbers as 9-2 and 0-4918,

cast off the 8 and the 1, then write the answer, 9-69, not 9-6913. Show that

5-60 + 20-7 + 103-193 = 129-5, with an error of about 0-01, that is about 0-08 / .

MULTIPLICATION AND DIVISION. The product 2-25ir represents the length
of the perimeter of a circle whose diameter is 2-25 units; * is a numerical

coefficient whose value has been calculated by Shanks,* to over seven hnmlrr.l

decimal places, so that it = 3-141592,653589,793. ... Of these two numbers,

therefore, 2-25 is the less reliable. Instead of the ludicrous 7-0685808625 . . .,

we simply write the answer, 7*07.

It is no doubt unnecessary to remind the reader that in scientific compu-
tations the standard arithmetical methods of multiplication and division

are abbreviated so as to avoid writing down a greater number of digits than

is necessary to obtain the desired degree of accuracy. The following scheme

for " shortened multiplication and division," requires little or no explanation :

Shortened Multiplication. Shortened Division.

9-774 365-4)3571-3(9-774

365-4 3288-6

2932-2 282-7

586-4 255-8

48-9

3 '9
25-5

3571-4 1>4

The digits of the multiplier are taken from left to right, not right to left.

One figure less of the divisor is used at each step of the division. The last

figure of the quotient is obtained mentally. A "bar" is usually placed over

strengthened figures so as to allow for an excess or defect of them in the

result.

Ostwald, in his Hand- mid Hilfsbuch zur Aus/iihruwj physiko-

chemiker Messungen (Leipzig, 1893), has said that " the use of

these methods cannot be too strongly emphasised. The ordinary

methods of multiplication and division must be termed unscientific."

Full details are given in Langley's booklet A Treatise on Compu-
tation (Longmans, Green & Co., 1895), or in the more formal

Calculs pratiques appliques aux Sciences d' Observation, by Babinet

and Housel.

The error introduced in approximate calculations by the "
caxtimj

off" f decimal figures. Some care is required in rounding off

decimals to avoid an excess or defect of strengthened figures by

making the positive and negative errors neutralise each other in

the final result. A good
"
dodge

"
is always to leave the last figure

A'..//. Soc., 22,4:.. 1873.
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an even number. E.g., 3 '75 would become 3*8, while 3 -85 would

be written 3*8.

The percentage error of the product of two approximate numbers

is very nearly the algebraic sum of the percentage error of each.

If the positive error in the one be numerically equal to the negative

error in the other, the product will be nearly correct, the errors

neutralise each other.

EXAMPLE. 19-8 x 3'18. The first factor may be written 20 with a +
error of 1

/ , and, therefore, 20 x 3-18 = 63-6, with a + error of 1
/

. This

excess must be deducted from 63-6. We thus obtain 62-95. The true result is

62-964.

The percentage error of the quotient of two approximate numbers

is obtained by subtracting the percentage error of the numerator

from that of the denominator. If the positive error of the nume-

rator is numerically equal to the positive error of the denominator,

the error in the quotient is practically neutralised.

Vide footnote, page 454.

APPROXIMATION FORMULAE CALCULATIONS WITH SMALL QUAN-
TITIES. The discussion on approximate calculations in Chapter V.

renders any further remarks on the deduction of the following

formulae superfluous :

For the sign of equality, read "
is approximately equal to," or " is very

nearly equal to ". Let a, /8, 7, . . . be small fractions in comparison with

unity or x.

(1 a) (1 j8)
= 1 a j8........ (1)

(1 ) (1 0) (1 7)
= 1 ft 7 ..... (

2
)

(1 a)
2 = 1 2a ; (1 a)

H = 1 na...... (3)

V(l + )
= 1 + * */* = K + 0)...... (*)

)

=
/(l a)

The third member of some of the following results is to be regarded as a

second approximation, to be employed only when an exceptional degree of

accuracy is required.

e* = 1 -f a
;

a = 1 + a log a........ (7)

log (1 + a)
= a = a - Aa2........ (8)

log (x + a)
= log x + a/X

- ia2/C
2....... (9)

x + a 2a 2 a2

"w^r-.-F + s-S.........
By Taylor's theorem, 99,

sin (x + )8)
= sin x + cos x - ^0

2sin x
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If the angle is not greater than 2$, /3 < -044 ; J/8* < -001 ; J/F < -00001.

But sin x does not exceed unity, therefore, we may look upon
sin(x + /8)

= sinx + ft cos x,

correct up to three decimal places. The addition of another term "-
4/8*"

will make the result correct to the fifth decimal place.

sin a = a = a(l
-

A**
2
) ;

cos a = 1 = 1 - a2..... (11)

sin (x ft)
= sin x j8 cos x ; cos (x ft)

= cos f & sin ./-. . (12)

tan a = a = a(l + $a
2
) ; tan (x 0) = tan x sector. .

EXAMPLE. Show that the square root of the product of two small

fractions is very nearly equal to half their sum. See (4). Hence, at sight,

N/24-00092 x 24-00098 = 24-00095.

190. Yariation.

When two quantities are so related that any increase (or

decrease) in the value of one produces a proportional increase (or

decrease) in the other, the one quantity is said to vary as, or to

vary directly as the other. On the other hand, when two

quantities are so related that any increase (or decrease) in the

one leads to a proportional decrease (or increase) in the other, the

one quantity is said to vary inversely as the other.

The symbol
" x "

denotes variation. For x oc y, read " x varies

as y
"

; for x x -, read " x varies inversely as y ".

/

The variation notation is nothing but abbreviated proportion.

Let x
lt 2/j ; x

2 , y2 ; x
3 , yz ; . . . be corresponding values of x and

y. Then, if x varies as y,

1. If x varies as y, directly or inversely, then x is equal to y,

or 1/y, multiplied by some constant.

Let K be a constant quantity. If

x oc y, x = KIJ ; or, if_x oc -, x =
*j

'->

This result is of the greatest importance. It is used in nearly every formula

representing a physical process. K is called the proportion constant or constant

of variation.

The proof follows directly from (1), the ratio of any value of x to the

corresponding value of y is always the same. This means that j-//
= constant.

2. If one magnitude varies as another, any two simultaneous

values of the two magnitudes are in the same proportion.

This also follows directly from (1). If x and y are simultaneous values of

AT and Y so that when X changes to j^ Y changes to y,.

r : .//
=

'-, :..'/,-



488 HIGHER MATHEMATICS. 190.

3. If x oc y, then y cc x (3)

4. If x cc y, y cc z, then x cc 2 (4)

5. If a? cc 7/2, then y cc cc/2 and z cc
a-/*/. (5)

6. If a; oc z, y cc z, then x y cc z
; (6)

and xyccz
2

. . . .

(7)

. . . (8)

(9)

<*jy
>-s*

7. If x cc y, then xtn cc ytn, where m is constant.

8. If x cc y, u cc v, then xu oc yv, or, x/u cc y/v. .

9. If x, y, z, are variable magnitudes such that xcc y, when z is

constant, xcc z, when y is constant, then xcc yz, when y and z vary

together.

Let X have a value x, when Y has a value y, and Z a value z. Let X
change its value from x to x^ when Y changes from y to y1

and Z remains

constantly equal to z. Again, let X change from x
l
to #2 ,

when Y remains

constantly equal to y and Z changes from z to z2 . From (1)

a/ai = yfai ;
and x^ =

z/z2 .

Multiply these two equations together.

x: x.2
= yz : y^,

that is to say, when YZ changes from yz to y^, X changes from x to a?2 so

that x, a?2 , yz, y^ are proportionals. Hence,
XccYZ....... (10)

10. If x varies as y when z is constant, and x varies inversely as

z when y is constant, then

XccY/Z, .... (11)
ivhen Y and Z both vary.

EXAMPLES. (1) It is known that the volume v of a mass of gas varies

inversely as the pressure p at a constant temperature 6 (Boyle's law), or,

v cc 1/p, (8 constant).

Again, the volume of any mass of gas varies directly as the absolute tempera-
ture 6, when the pressure is constant (Gay Lussac's law), i.e.,

v cc 6, (p constant).

Hence show, by equations (2), (5), and (11), that when p and 6 both vary

pv = R0....... (12)

where R is the constant of proportion. It is by no means uncommon to find

this simple formula deduced by a vicious combination of Boyle's and Gay
Lussac's laws. The results expressed in formulae (7) and (10) are confused.

(2) Show, as in (1), that

(3) If the density p of a gas is directly proportional to the pressure at

constant temperature, show that

p = RPe- and PolPoe
= pjpfr..... (14)

(4) In a current textbook on The Theory of Solutions it is shown that

v = v (l + a0) ; p p (l + a0).

The work then continues :

" By uniting these two (equations) we obtain

pv =p (l + o0)".
Point out the fallacy in this demonstration.
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191. Permutations and Combinations.

Each arrangement that can be made by varying the order of

some or all of a number of things is called a permutation. For

instance, there are two permutations of two things a and b, namely
ab and ba

;
a third thing can be added to each of these two permu-

tations in three ways so that abc, acb, cab, bac, bca, cba results.

The permutations of three things taken all together is, therefore,

1x2x3; a fourth thing can occupy four different places in each

of these six permutations, or, there are 1x2x3x4 permutations
when four different things are taken all together. More generally,

the permutations of n things taken all together is

n
(
n _

i)(w _
2) . . . 3.2.1 = nl

n\ is called "
factorial n ". It is generally written

\

n.*

Using the customary notation nPH to denote the number of

permutations of n things taken n at a time, .

(number of thing) (number of thingi taken)
= * = n -

If some of these n things are alike, say p of one kind, q of

another, r of another,

If only r of the n things are taken in each set,

HPr
- n(n

-
1) (n

-
2) . . . (n

- r + 1).

Each set of arrangements which can be made
a by taking some

or all of a number of things, without reference to the internal

arrangement of the things in each group, is called a combination.

In permutations, the variations, or the order of the arrangement of

the different things, is considered; in combinations, attention is

only paid to the presence or absence of a certain thing. The

number of combinations of two things taken two at a time is one,

because the set ab contains the same things as ba. The number

*
It is worth knowing that ,

n ! = r(/t + 1).

the gamma function of 83. When n is very great

n !
= n ne

~ n \ -

known as Stirling's formula. This allows n ! to be evaluated by a table of logarithm* .

The error is of the order fan of the value of ;/ !
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of combinations of three things taken two at a time is three r

namely, ab, ca, be
;
of four things, ab, ac, ad, be, bd, cd. But

when each set consists of r things, each set can be arranged in r !

different ways.
Let HCr denote the number of combinations of n things taken r

at a time. We observe that the nCr combinations will produce

nCr x r ! permutations. This is the same thing as the number of

permutations of n things in sets of r things. Hence, by (3),

r/ JPV *(*
-

1) (n
-

2) . . . (n
- r + 1)

r
~

r ,

=

r |

%!(- r)l*

Nearly all questions on arrangement and variety can be referred to the

standard formulae (3) and (5). Special cases are treated in any textbook on

algebra.

In spite of the great number of organic compounds continually pouring
into the journals, chemists have, in reality, made no impression on the great

number which might exist. To illustrate, Hatchett (Phil. Trans., 93, 193,

1803) has suggested that a systematic examination of all possible alloys of all

the metals be made, proceeding from the binary to the more complicated

ternary and quaternary. Did he realise the magnitude of the undertaking ?

EXAMPLES. (1) Show that if one proportion of each of thirty metals

be taken, 435 binary, 4.060 ternary and 27,405 quaternary alloys would have

to be considered.

(2) If four proportions of each of thirty metals be employed, show that

6,655 binary, 247,660 ternary and 1,013,985 quatenary alloys would have to be

investigated.

The number of possible isomers in the hydrocarbon series involving side

chains, etc., are discussed in the following memoirs : Cayley (Phil. Mag. [4],

13, 172, 1857 ; 47, 444, 1874 ; or, British Association's Reports, 257, 1875) first

opened up this question of side chains. See also Lodge (Phil. Mag. [4], 50r

367, 1875), Losanitsch (Berichte der deutschen clicmischen Gesellschaft, 30,.

1,917, 1897), Hermann (ib., 3,423), Key (ib., 33, 1,910, 1900), Kauffman (ib.,

2,231).

192. Mensuration Formulae.

Reference has frequently been made to EUCLID i., 47. In any right-

angled triangle,

(Square on hypotenuse) = (Sum of squares on the oilier two sides).

Also to EUCLID vi., 4. If two triangles ABC and DEF are equiangular so

that the angles at A, B, and C of the one are respectively equal to the angles

D, E, and F of the other, the sides about the equal angles are proportional,

so that

AB : BC = DE : EF
; EC : CA = EF : FD ;

AB : AC = DE : DF.
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IT = 3-1416, or, Jyi.

= degrees of arc.

r denotes the radius of a circle.

The following are standard reference formulae :

I. Lengths (arcs and perimeters).

CHORD OF CIRCLE (6
= angle subtended at centre) = 2r sin 0. . (1)

ARC OF CIRCLE (6
= angle subtended) = T^07rr..... (2)

PERIMETER OF CIRCLE = 2r = * x (Diameter)..... (3)

PERIMETER OF ELLIPSE (semiaxes , 6)
= 2w <s/i(a* + 6s

).
. . (4)

II. Areas.

RECTANGLE (sides a, b)
= a. b. ....... (5)

PARALLELOGRAM (sides a, b ; included angle 6)
= ab sin 0. . . (6)

RHOMBUS = (Product of the two diagonals)...... (7)

TRIANGLE (k = altitude ;
b = base) = \h . b

;

= $ab sin C ; (8)

= Js(s -
a) (s -b)(s- c),

where a, 6, c, are the sides opposite the respective angles A, B, C,

s = %(a + b + c).

SPHERICAL TRIANGLE = (A + B + C -
ir)r

2
,
..... (9)

where r is the radius of the sphere, A, B, C, are the angles of the triangle

(Fig. 142).

TRAPEZIUM (h = altitude
; parallel sides a, b)

= $h(a + b). . . (10)

POLYGON OF n EQUAL SIDES (a)
= na2 cot (180/?i)..... (11)

CIRCLE = nr2 = JTT x (Diameter)? ....... (12)

CIRCULAR SECTOR (6
= included angle) = (^ Arc) x (Radius) ;

CIRCULAR SEGMENT = (Area of sector]
- (Area of triangle) \

= -fa*** - Ar2 sin e. I
The triangle is made by joining the two ends of the arc to each other and

to the centre of the circle. 9 is angle at centre of circle.

PARABOLA CUT OFF BY DOUBLE ORDINATE (2y) = $xy ; )

= | (Area of parallelogram of same base and height). )

ELLIPSE = ira.b .......... (16)

CURVILINEAR AND IRREGULAR FIGURES. See Simpson's rule.

SIMILAR FIGURES. The areas of similar figures are as the squares of the

corresponding sides. The area of any plane figure is proportional to the square

of any linear dimension. E.g., the area of a circle is proportional to the square

of its radius.

III. Surfaces.

SPHERE = 4irr2........... (17)

CYLINDER (h = height) = 2r7*......... (18)

PRISM (p = perimeter of the base) = ph. ..... (19)

CONE OR PYRAMID = ^p x (Slant hfiqht)...... (20)

SPHERICAL SEGMENT (h = height) = 2*rh...... (:M>
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IV. Volumes.

RECTANGULAR PARALLELOPIPED (sides a, b, c)
= a . b . c. . . (22)

SPHERE = f (Circumscribing cylinder) ; ^
= firr

3 = 4-189r3 = ITT (Diameter)? }
SPHERICAL SEGMENT (li

= height) = *(3r
-

h)h? (24)

CYLINDER OR PRISM = (Area of base) x (Height) ; )

CONE OR PYRAMID = ^(Circumscribing cylinder or prism) ;
-\

= (Area of base) x $ (Height) ; (26)

= lirr^h = l-047r2/i.

SIMILAR FIGURES. The volumes of similar solids are as the cubes of

corresponding sides. The volume of any solid figure is proportional to the

cube of any linear dimension. E.g., the volume of a sphere is proportional

to the cube of its radius.

V. Centres of Gravity.

PLANE TRIANGULAR LAMINA. Two-thirds the distance from the apex of

the triangle to a point bisecting the base.

CONE OR PYRAMID. Three-fourths the distance from the apex to the

centre of gravity of the base.

A tetrahedron is a pyramid with a triangular base (see next section).

193. Bayer's
" Strain Theory

"
of Carbon Ring Compounds.

This theory has attracted some attention amongst organic chemists. It is

based upon the assumption that the four valencies of a carbon atom act only

in the directions of the lines joining the centre of gravity of the atom with the

apices of a regular tetrahedron. In

other words, the chemical attrac-

tion between any two such atoms is

exerted only along these four direc-

tions. When several carbon atoms

unite to form ring compounds, the
" direction of the attraction

"
is de-

flected. This is attended by a pro-

portional strain. The greater the

strain, the less stable the compound.
One does not readily take to the

idea of a force acting round a cor-

ner, nevertheless, the theory has

explained some facts. The stability

of certain compounds does appear to

FIG. 130. be related with the theoretica- de-

flection of this "direction of attraction ". Apart from all questions as to the

validity of the assumptions, we may find the angles of deflection of the

"directions of attraction" for two to six ring compounds as an exercise in

mensuration.
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First, to find tiie angle between these "directions of attraction" at the centre

of a carbon atom assumed to liave the form <>f a wjular trtrnlinlnm.

Let s be the slant height of a regular tetrahedron (Fig. 130), h the vertical

height, I the length of any odge, <j>
the angle made by the lines joining any

two apices with the centre of the tetrahedron.

.-. sa + M=P; a = |P.
But // divides s in the ratio 2 : 1, hence (g 191),

/t
2 = P -

(jj)
= IP.

But CD = 2BD = 1; BC = AB = s; CE = h. Hence, fe = \/jJ. From a
result in 192, the middle of the tetrahedron cuts CE at O in the ratio

3 : 1.

.-. sin ft = lafih ; or, = 109 28'. . . . (1)

Second, to find the angle of deflection of the " direction of attraction," when
2 to 6 carbon atoms form a closed ring.

From (1), for acetylene HZC \ CH^, the angle is deflected from 109 28' to

4(109 28'), or 55 44'.

For trimethylene, assuming the ring is an equilateral triangle, the angle
is deflected $ (109 28' - 60) = 24 44'.

For tetramethylene, assuming the ring is a square, the angle of deflection

is $ (109 28' - 90) = 9 34'.

For pentamethylene, assuming the ring to be a regular pentagon, the angle
of deflection is (109 28' - 108), or 44'.

For hexamethylene, assuming the ring is a regular hexagon, the angle of

deflection is \ (109 28' - 120), or - 5 76'.

EXAMPLE. Find the value of the angle 6, in Fig. 130. Ansr. 70 32'.

194. Plane Trignometry.

Beginners in the calculus trip oftenest over the trignometrical work. The

following outline will perhaps be of some assistance.

Trignometry deals with the relations between the sides and angles of

triangles. If the triangle is drawn on a plane surface, we have plane trigno-

metry ; if the triangle is drawn on the surface of a sphere, spherical trigno-

metry. The trignometry employed in physics and chemistry is a mode of

reasoning about lines and angles, or rather, about quantities represented by
lines and angles (whether parts of a triangle or not), which is carried [on by
means of certain ratios or functions of an angle.

1. The measurement of angles. An angle is formed by the intersection of

two lines. The magnitude of an angle depends only on the relative directions,

or slopes of the lines, and is independent of their lengths. In practical work,

angles are usually measured in degrees, minutes and seconds. These units

are the subdivisions of a right-angle defined as

1 right angle = 90 degrees, written 90 ;

1 degree = 60 minutes, written 60' ;

1 minute = 60 seconds, written 60".

In theoretical calculations, however, this system is replaced by another.
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In Fig. 131, the length of the circular arcs P'A', PA, drawn from the centre O,

are proportional to the lengths of the radii OA' and OA, or

&rcPA
radius OA'

~
radius OA'

If the angle at the centre O is constant, the ratio, arc/radius, is also constant.

This ratio, therefore, furnishes a method for measuring the magnitude of an

angle. The ratio

1, is called a radian.
radius

Two right angles = 180 = IT radians, where IT = 180 = 3-14159. . . .

The ratio, arc/radius, is called the circular or radian measure of an angle.

{Radian = unit angle.)

2. Relation between degrees and radians. The circumference of a circle

of radius r, is 2*r, or, if the radius is unity, 2-n-. The angles 360, 180, 90, . . .

correspond to the arcs whose lengths are respectively 2-ir, IT, far, ... If the

angle AOP (Fig. 131) measures D degrees, or o radians,

D:360 = a:27r.

>.-**;..... (1)

EXAMPLES. (1) How many degrees are contained in an arc of unit length ?

Here a = 1,

.-. D = 360/27T = 57-295 = 57 17' 44-8".

(2) How many radians are there in 1. Ansr. Tr/180 ;
or -0175.

(3) How many radians in 2J ? Ansr. -044.

8. Trignometrical ratios of an angle as functions of the sides of a triangle-

'There are certain functions of the angles, or rather of the arc PA (Fig. 131)

called trignometrical ratios. From P drop the perpendicular PM on to OM
.(Fig. 132). In the triangle OPM,

(i.) The ratio
t or,

perpendicular
,

is called the tangent of the angleOM base

POM, and written, tan POM.
It is necessary to show that the magnitude of this ratio depends only on

the magnitude of the angle POM, and is quite independent of the size of the

triangle. Drop perpendiculars PM and P'M' from P and P' on to OA
(Fig. 131). The two triangles POM and P'OM', are equiangular and similar,

therefore, as on page 490, M'P'/OM
f = MP/OM.

(ii.) The ratio 9, or,
ba
*f ,

is called the cotangent of the angleMP perpendicular

POM, and written, cot POM. Note that the cotangent of an angle is the

reciprocal of its tangent.
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(iii.) The ratio ^J = perpendicular called h Q{ fa ftQ
()/' hypotenuse

And written, sin POM.

(iv.) The ratio g = hyPotenuse ia caned the cosecant of the angleMP perpendicular

POM, and written, cosec POM. The cosecant of an angle is the reciprocal of

its sine.

(v.) The ratio -^ = base
, is called the cosine of the angle POM,OP hypotenuse

and written, cos POM.

(vi.) The ratio
J^.

= hyP^ U8e
is called the secant of the angle POM,

and written, sec POM. The secant of an angle is the reciprocal of its cosine.

EXAMPLE. If a- be used in place of POM, show that

since =
;
cot x =

;
cos x

cosec x tan x sec x

The squares of any of these ratios, (sin a-)
2

, (cot x)
2
,

. . ., are generally

written sin2.r, cot2# . . .; (sin.v)"
1
, (cot or)"

1
, . . ., meaning -

, , . . .,

sin x cot x

cannot be written in the forms sin
~ l

x, cot~ l
x, . . ., because this latter symbol

has the meaning
" the angle whose sine, cotangent, . . ., is x "

( 15). If x is

known, the numerical value of sin
~ l

x, etc., is given in the regular tables.

Some mathematicians write "arc sin.r, arc cot a*, . . .," instead of sin" 1
*,

cot- 1
^, . . ..respectively.

4. Conventions as to the sign of the trigonometrical ratios. This subject

has been treated on page 111. In the following table, these results are

summarised. The change in the value of the ratio as it passes through the

four quadrants is also given.

TABLE XIII. SIGNS OF THE TRIGNOMETRICAL RATIOS.

If the Angle is in

Quadrant.
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5. To find a numerical value for the trignometrical ratios.

(i.) 45 or ITT. Draw a square ABCD (Fig. 133). Join AC. The angle
BAG = half a right angle = 45. In the right-angled triangle BAG (Euclid i.,.

47),
AC* = AB* + BC*.

Since AB and BC are the sides of a square, .*. AB BC, hence,

AC* = 2AB* = 2BC* ; or, AC = \/2 . AB = VT. BC.

BC I AB I BC
;
cos 45= ,=-_;tan45 = I-B

= l.

FIG. 133. FIG. 134.

(ii.)
90 or fa. In Fig. 134, if POM is a right-angled triangle, as M

approaches O, the angle POM approaches 90. When PM coincides with

OB, OP = MP, and OM = zero.

(iii.) 0. In Fig. 135, as the angle POM becomes smaller, OP approaches
OM, and at the limit coincides with it. Hence, PM =

; OM = OP.

.-. sinO ===.= 0.

FIG. 135.

M
FIG. 136.

(iv.) 60 or \-K. In the equilateral triangle (Fig. 136), each of the three

angles is equal to 60. Drop the perpendicular OM on to PQ. Then
2PM=PQ= OP.

By Euclid i., 47,

OP2 = MP* + OM*. .-. 4PM2 = OM* + PM* ;
or OM* = 3PM2

.

.-. OM = >/3~. PM; angle OPM = 60.
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(v.) 30 or *. Using the preceding results,

(6)

The following table summarises these results:

TABLE XIV. NUMERICAL VALUES OF THE TRIONOMETRICAL RATIOS.

Angle.
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6. Trignometrical ratios of the supplement of an angle. The angle 180 -
x,

or IT - x, is called the supplement of the angle x. In Fig. 137, let POM = x,

M' M
FIG. 137.

produce MO to M'. Then the angle POM' is the supplement of x. Make
the angle P'OM' = POM. Let OP' = OP. Drop perpendiculars P'M' and
PMonto BA. The triangles 0PM and OP'M' are equal in all respects. If

OM is positive, OM' is negative.

.-. M'P' = MP ;
and OM' = - OM.

sin (180
-

x) = sin (*
-

x) = sin POM' = sin P'OM = sin a-.

cos (180
-

x)
= - cos x

;
tan (180 -

x) = - tan x.

EXAMPLES. (1) Find the value of sin 120.

sin 120 - sin (180
- 60) = sin 60 = \/3/2.

(2) Evaluate tan 120. Ansr. - \/3.

7. Trignometrical ratios of the complement of an angle. The angle 90 -
x,

or ?r - x, is called the complement of x. In Fig. 138, PN and PM are per-

pendiculars on OB and on OA respectively. Then OM = NP, ON = MP.
NP OM

sin (90
-

x) = sin (w -
x)
= sin NOP =

-^p
=

-^p
= cos x.

cos (90
-

*) = sin x
; tan (90

-
x) = cot x

;
cot (90

-
x) = tan x.

3. To prove that sin x\ cos x = tan x.

sin* MP /OM MP OP MP
c^s*

=
OP/ OP

=
OP x OM = OM = tan x '

9. To prove that sin'
2* + cos2* = 1. In Fig. 138, by Euclid i

Ope _ j,fp2 + OM2
. Divide through by OP2

,
and

OP2 MP2 OM2 /MP\ 2 /OMV
-r/flsl +11

47,

1 = OP2
~ OP2 + OP2

/ OP/

10. To show that sin (x + y)
= sin x . cos y + cos x . sin T/. In Fig. 139,

PQ is perpendicular to 00,, the angle #PQ= angle NOQ (Euclid i., 15 and 32).



J
l'.4. COLLECTION OF FORMULAE l-nii IIKKKUK.V

MP HP QN I'll i\> NQ OQ
' 8ln (* + */)

= op
=

01' <>/' !><>'<>, 'I-

= sin x . cos
// + cos ./ . sin //.

11. Summary of trigonometrical formulae
(
\'> The above defi-

nitions lead to the following relations, which form routine exercises in

elementary trignometry. Most of them may be established geometrically
as in the preceding illustrations :

Note : * = 180 ; or 3-14159 radians.

Complement of x, or (90
-

x), or,

sin (^ir
-

x) = cos x
;
cos (^ir

-
.7-)
= sin x

;

cosec (ir
-

x) = sec x
; sec (ir

-
x) = cosec x

; ... (7)

tan (^T
-

x) = cot x ; cot (ir
-

x) = tan x.

Supplement of x, or 180 - x, or IT - .r.

sin (ir
-

x) sin x
;
cos (TT

-
x) = - cos x ;

|

tan
(IT

-
x)
= - tan x

; cot (?r
-

x) = - cot x. I

Angles 90 + x, and 180 + x.

sin (T + x) = cos x ;
cos (TT + x) = - sin x

;

tan (TT + x) = - cot x
,
cot (lir + .r)

= - tan .r.

sin
(ir + x) = - sin x

;
cos

(TT + x)
- cos .r ; \ QQV

tan (ir + x) tan a-
; cot (IT + .r)

= cot .r. /

Negative Angles,

sin
(
-

x) = - sin x
;
cos

(
-

x) = cos .r ; tan (
-

.r)
= - tan r. . (11)

Limiting Tallies.

sino- tana: sin"^ tan
-

lx

X X >' X

General Form*.

When n is any negative or positive integer or zero.

sin x = sin [mr + (
-

l)"xj (13)

cos x = cos (2mr x) (I4 )

tanx = tan (n* + x). U5
)

Miscellaneous lielationn.

tan x = sin x\ cos x ;
cot x = cos x/ sin x.

sin2x + cos2x = 1 U~)

sin x = \
7
1 - cos2x ;

cos x = \'l - sinax. (18)

cosec x = \/l + cot2x ;
sec x = \'l + tan'2x (19)

tanx 1 ,m
sin x = -7- =;cosx = , == ==-. '-v '

VI + tan2x VI + tan-./

sin (x y) = sin x . cos y cos x . sin //.

cos (x + y) = cos x . cos y + sin x . sin i/.

These two results can be proved by Taylor's theorem.

sin (x + y) + sin (x
-

y) = 2 sin x . cos //.

MII (.r + y)
- sin (x

-
y) = 2 cos .r . sin //

cos (x + y) + cos (x
-

?/)
= 2 cos x . cos y

cos (x + y)
- cos (x

-
y) = - 2 sin x . sin // i-<J>
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If x = y, from (21) and (22),

sin 2x = 2 sin x . cos x......... (27)

cos 2x = cos2* - sin2
.r......... (28)

= 2 cos2* - 1...... . . . . (29)

= 1-2 sin2*.......... (30)

sin x = 2 sin \x . cos %x. . ....... (31)

cos x = 2 cos2 a; - 1
; or, 1 + cos x = 2 cos2 #. . . . (32)

= 1-2 sin2 #
; or, 1 - cos x = 2 sin2^. . . . (33)

sin 3x = 3 sin x - 4 sin%......... (34)

cos 3x = 4 cos3* - 3 cos x......... (35)

If in (23) to (26), we suppose x + y = o ; x - y =
;
x = (a + 0) ;

?/
=

(a -
).

Now put for a, and y for 3, for the sake of uniformity. Thus,

sin x + sin y = 2 sin ^(* + y) . cos (*
-

y)...... (36)

sin x - sin y = 2 cos $(x + y) . sin %(x
-

y)...... (37)

cos a? + cosy = 2cos(x + y) . cos \(x
-

y}...... (38)

cosz - cosy = - 2 s'm$(x + y) . s\u^(x -
y)..... (39)

By division of the proper formulae above,

tan x + tan y^fr + ^l-tana.tan;/
....... <40>

sin (a; + ?/)
tan a? + tan y = - ...... (43)J cos x . cos y

;
tan l= (45>

12. Properties of triangles. Let a, b, c (Fig. 140), be sides opposite the

FIG. 140.

angles A, B, C, of the triangle ABC. Then

sin A sin B sin C

In words, the sines of the angles of a plane triangle are proportional to the

opposite sides. This is known as the Eule of Sines.

a2 = 62 + C2 _ ^bc .cos A (47)



195. COLLECTION OF FOR AIT I.A I ; I n|; IM II LI\CE. 601

The other letters may be substituted in cyclic order. Let
Oo ft i_ h _i_ / r\v Q 1 in i /. i ^2s = a + b + c

; or, s = (a + b + c).

V(
s _

b) (s
-

c)
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If, therefore, a represents the arc of a circle of unit radius corresponding to

the angle POM, we may represent the trignometrical functions by the length

of a line, thus
sin a = PM ;

cos a = OM ; tan a = QN ;

cosec a = OT ;
sec a = OQ ;

cot a = RT.

Instead of referring to sin a as " the sine of the angle a," we say that sin o
"

is the sine of the arc a ". This is usually done in spherical trignometry,

which deals with the relations between the several parts of a triangle drawn

on the surface of a sphere, and bounded by three arcs of a great circle. A

great circle of a sphere is the boundary of any section passing through the

centre, while a small circle bounds any section of a sphere not passing through

the centre.

2. Rule of sines.
" The sines of tlie sides of a right-angled spherical

triangle are as the sines of tlie opposite angles."
* Let A, B, C (Fig. 142), be

FIG. 141. FIG. 142. Spherical Triangle.

the three angles of a right-angled spherical triangle whose opposite sides are

a, b, c. Let be the centre of the circle CaB (or BeA, or CbA). Drop
perpendiculars CE on OA and CD on OB. Join DE.

The plane CDE is perpendicular to the plane OBA. If A be a right-

angle, the plane CAO is at right angles to the plane .OBA. Hence, CED
and CDE are right angles. CE is the sine of the arc AC, or CE= sin b.

Since the plane CBO and ABO include the same angles as the spherical

triangle ABC, and radius of sphere = OC = OB = OA,
CE . CD . CE

oc>
' smrsin B

CE
Similarly, sin B . sin a = -^ = sin A . sin b

;
and finally,OC

sin A sin B sin C
~

sin rsin a sin o sin c

As an exercise, show that this result is true for any spherical triangle,

the formal resemblance between this result and (46), preceding section.

3. Properties of any spherical triangle. (For reference.) Let

s = $(a + b + c); S = %(A + B + C).

(1)

Note

* The meanings of the terms "
sines of the sides

" and " sines of the angles
"

of

spherical triangle shoiild be apparent from 3, 194, and 1, 195.
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Cosines of the Angk* in Ti-nn* <>f tin-

cos a - cos 6 . cos c cos b - cos c . COB a
CO* A =

si,,/,, si,,,-
-;COSB= 8inc . gipa

; <-'>

and so on for cos C, by substituting the letters in cyclic order.

Cosines of the Sides in Terms of the Angli s.

cos A - cos B . cos C cos U - cos C . cos A
cos a =

sin B. sinC
--

: cos b
sin C. sin ^

- etc '
<
8

>

Angles in Terms of the Sides.

;
sin B =

sin c^ '
etc"

where 2g = 2 \/sin sTsin (s
-

a) . sin
(

-
6) . sin (s

-
c).

Sines of tJie Sides in Terms of the Angles.

20 2O
sin a =

sin B. sinC ;
sin 6 =

sin <; . siu ,1
'

where 2Q = 2 V - cos 6' . cos (S
-

A) . cos (S
- B) . cos (S -

C).

Sines of Half the Angles in Terms of the Sides.

.
A- /sin (s

-
6) . sin (s

-
c)sm o = \\- ;

, etc. (b)
\ sin b . sm c

Cosines of Half the Angles in Terms of the Sides.

A /sin s . sin (s
-

a)
cos 77

= \ -A etc. ... (7)
y sm 6 . sm c

Tangents of Half the Angles in Terms of the Sides.

tan | = J^S^.' sinls -
<>, etc. ... (8)

\ sin s . sm (s
-

a)

Sines of Half tJie Sides in Terms of the Angles.

= .. .

2 \ sm I/ . sm C

Cosines of Half tlw Sides in Terms of the Angles.

. sin C

Tangents of Half the Sides in Terms of the Angles.

a
I

_ coTJS . cos (S
- A)~

fc

/n v

tan
2
-
VcosT6' - B) . coslS^Q'

et

Tangents of the Sum, and of the Difference of Two Angles.

* '>

Tangents of the Sum, and the Difference of Two Sides.

Formulae (12) to (15) are known as Napier's analogies.
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4. Properties of right-angled spherical triangles.

sin a = cot B . tan b (16)

sin a = sin A . sin c (17)

sin b = cot A . tan a, etc. .... (18)

sin b = sin B . sin c, etc. .... (19)

cos c = cot A . cot B, etc. . .- . . (20)

cos c = cos a . cos b, etc. .... (21)

cos A = tan b . cot c (22)

cos A = sin B . cos a. (23)

cos B tan a . cot c, etc. .... (24)

cos B = sin A . cos b, etc. .... (25)

C = 90.

5. The solution of oblique-angled triangles. Given certain parts of a

spherical triangle, to find the remaining parts.

Case i. Given three sides. Use formulae (8) for tan %A, tan %B and tan \C.

Case ii. Given three angles. Use formulae (11) for tan a, tan %b and

tan Ac.

Case iii. Given two sides and tlie included angle, say a, C, b. Use (1) for

sin c, (12) and (13) for tan \(A + B) and tan $(A -
B).

Case iv. Given two angles and the side between them, say A, c, B. Use (1)

for sin C, (14) for tan \(a + b) and (15) for tan %(a
-

b).

Case v. Given two sides and the angle opposite one of tJiem, say a, 6, A .

Use (1) for sin B, (12) for tan C and (14) for tan Ac.

Case vi. Given two angles and the side opposite one of them, say A, B, a.

Use (1) for sin b, (12) for tan \C and (14) for tan \c.

6. The solution of right-angled triangles.

Case i. Given hypotenuse c and side a. Use (21) for cos b, (24) for cos B,

(17) for sin A.

Case ii. Given hypotenuse c and angle A. Use (22) for tan b, (20) for cot B,

(17) for sin a.

Case iii. Given two sides a and b. Use (21) for cose, (18) for cot A, (16)

for cot B.

Case iv. Given two angles A and B. Use (20) for cos c, (23) for cos A, (25)

for cos b.

Case v. Given the side b and the adjacent angle A. Use (22) for tan 6, (18)

for tan a, (25) for cos B.

Case vi. Given side a and the opposite angle A. Use (17) for sin c, (18) for

sin b, (23) for sin B.

196. Summary of Relations among the Hyperbolic
Functions.

(See Chapter VI.)

cos x = cosh ix = $(e
tx + e~ tx

) (1)

sin ,r = - sinh ix = (e
lX - e

~ LX
) (2)
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cos x + i sin x = cosh ix + sinh ix ..... (3)

cos x -
i sin x = cosh ix - sinh x = e

~ ljr

(4)

cosh x = cos <x ; i sinh x = sin ix (5)

tanh x = sinh x/oosh x ; coth x = cosh x/sinh
cosech x = 1/sinh x ; sech x = 1/cosh j-. /

"

cosh = 1; sinh = 0; tanh =
(7)

cosh
( oo)

= + oo
;
sinh

( oo)
= + CD

; tanh
( oo)

= + 1. . . (8)

sinhx tanh x _ .
. L . cosh x _ l

,

gJjtx - - = 1
, L,tx - - - A . M* = o

- -A-

sinh
(
-

x)
= - sinh x

; cosh (
-

x)
= cosh x

; tanh (
-

x) = - tanh x. (10)

sinh (x y) = sinh x . cosh y cosh .T . sinh y (11)

cosh (x y)
= cosh x . cosh y sinh x . sinh y (12)

tanh x + tanh ytanh (x y) = 1tanh-. tanh%.
. (13)

cosh (x + iy)
= cosh x . cosh ty + sinh .r . sinh iy

= cosh x . cos y + i sinh x . sin y.

sinh (x + i?/)
= sinh x . cosh iy + cosh x . sinh iy

cosh x . cos y + i sinh x . sin y. )

= sinh x . cos ?/ + cosh x . sin y. )

.sinh x + sinh y = 2 sinh (x + #) . cosh (x
-

y) (16)

sinh x - sinh y = 2 cosh (x + y) . sinh ^(x -
y) (17)

cosh x + cosh y = 2 cosh $(x + y) . cosh \(x
-

y) (18)

cosh x - cosh y = 2 sinh (x + y) . sinh (x
-

y) (19)

sinh 2x = 2 sinh x . cosh x = 2 tanh x/(l
- tanh2

x). . . (20)

cosh 2x = cosh2x + sinh2x
; (21)

= 1 + 2 sinh2x = 2 cosh2x - 1 ; (22)

=
(1 + tanh2

x)/(l
- tanh2

x) (23)

cosh x + 1 = 2 cosh2 x ; cosh x - 1 = 2 sinh2
^x (24)

tanh x = sinh x/(l + cosh x) ; |
/

25
v

= (cosh x -
l)/sinh x. /

sinh2x - cosh2x = 1 . . . (26)

1 - tanh2x = sech*x
;
coth2x - 1 = cosechV (27)

cosh x = 1 /V(l - tanh2
x) ;

sinh x = tanh x / N/(l
- tanhV). . (28)

sinh 3x = 3 sinh x + 4 sinh3x (29)

cosh 3x = 4 cosh3x - 3 cosh x (30)

Gudermannians. The functionCcos
" l sech x, is called gudermannian x,

;and written gd x. If
|
^e^w* ' x^vi^- v

y = cos
~ * sech x, cos x = sech x.

sin x = x/(l
- sech8*) = tanh ./ -.

tan x = tanh x/sech x = sinh X.

.-. gd .r = cos
~ l sech x = sin

- l tanh x = tan
" 1 sinh x. . (Ml)

If x = log tan UT -
^x) ; . . . . (32)

.-. r = tan- 1 sech x = gd x, .... (33)

or inverse gd x. Hence log tan (ir 4- *.r)
= gd

~
lx (34)

Analogous to Demoivre's theorem

(cosh x sinh x)" = cosh >u- sinh ?u-. . . . (35)

It is instructive to compare the above formulae with the corresponding

trignometrical functions in 11, 194. The analogy is also brought out by



506 HIGHER MATHEMATICS. 196..

tabulating corresponding indefinite integrals in Tables I. and III., side by
side. A few additional integrals are here given to be verified and then added
to the table of indefinite integrals which the student has been advised to-

compile for his own use.

Hyperbolic.
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CHAPTER XIII.

REFERENCE TABLES.

TABLES of common logarithms and of the trignometrical ratios are

indispensable in applied mathematics (see pages 37 and 484).

Most of the following tables have been referred to in different

parts of this work, and are reproduced here because they are not

usually found in the smaller current sets of
" Mathematical

Tables ".

TABLE I. Table of Standard Integrals.

(Page 158.)

TABLE II. Numerical Values of the Gamma Function.

(Described in 84, page 191.)

e
~ xxn ~ ldx + 10 or log T(n) + 10 from n = 1 to n = 2.

n.
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TABLE II. Continued.

n.
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TABLE II. Continued.

M,
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TABLE IV. Numerical Values of the Hyperbolic Sines.

(Described in 116, page 280.)

X.
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TABLE V. Numerical Values of the Hyperbolic Cosines.

(Described in } 1 Hi, page 280.)

.
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TABLE VI. Numerical Values of the Factor

0-6745 ./
L-

\ra-l

(Described in 178, page 438.)
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TABLE VIII. Numerical Values of the Factor

I ;

0-8453J-\ nn - 1n(n
-

1)

(Described in 178, page 438.)
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TABLE X. Numerical Values of the Probability Integral
O fhx

P=-
\
6-

VTTjo

where P represents the probability that an error of observation will have a

positive or negative value equal to or less than .?, li is the measure of precision.

(Described in 180, page 446.)

lix.



E TABLES 51

TABLE XI. Numerical Values of the Probability Integral
i

P = -

Where P represents the probability that an error of observation will have
a positive or negative value equal to or less than .r, r denotes the probable error.

X
r'
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TABLE XII. Numerical Values of- Corresponding to Different

Values of //, in the Application of Chau venet's Criterion.

(Described in 187, page 476.)

n.
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TABLE XVI. Square Roots of Numbers from O'l to 9'9.
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TABLE XIX. Cube Roots of Numbers from 1 to 100,

II.
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TABLE XXII. Numerical Values of cr* from x = to x = 10.

.r.
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TABLE XXIV. Logarithms of Numbers to the Base e.

(Table of Natural Logarithms.)

Many formulae require Natural logarithms (also called Napierian

or Hyperbolic logarithms), and it is convenient to have at hand a

table of these logarithms to avoid the necessity of having recourse

to the conversion formulae of 16.

The following table is to be used in the ordinary way. For

numbers between 1 and 10, not given in the table, use interpola-

tion or proportional parts. For numbers greater than 10, proceed
as described in one of the following examples :

EXAMPLES. (1) Show that \ogeir
= loge(3-1416) = 1-1447.

(2) Required the logarithm of 5,540 to the base e. Here

Ioge5,540 = loge(5-540 x 1,000) = loge(5'54 x 103
) ;

hence, Ioge5,540 = log5-54 + 3 Ioge10 = 8-6198.

(3) Show that Ioge100 = 4-6052
; logel,000 = 6-9078 ; log10,000 = 9-2103 ;

Ioge100,000 = 11-5129.

(4)
If 100 c.c. of a gas at a pressure of 5,000 grams per square centimetre

expands until the gas occupies a volume of 557 c.c., what work is done during
the process ? From page 209,

W = p1v1 loge-
2 = 5,000 x 100 x loge5-57 = 858,700 ergs.

vi

If a table of ordinary logarithms had been employed we should have written

2-3026 x log105-57 in place of loge5-57.

NOTE : log, 10 = 2-3026.

t
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Mix HLLANEOUS EXAMPLES. Since most of the problems in this work

have been appended as exercises to particular sections, the student may
desire to test himself with a few miscellaneous problems.

(1) Show that

1 _ 2
_!_

.r 14 /.i-

~x +
3~!'2

+
6!

(2) The plates of a condenser of capacity C are connected by a wire of

self-induction L and resistance R. The current then satisfies the equations

do , dx x

*-l ;
L
Tt

+ Rx + c
=

>

where q denotes the charge on the condenser. Discuss these equations, and

show that the charge will die away gradually when R*C > 4L, and will

perform a series of damped oscillations of period

4irL(4C
- l - Rz

)-* when R*C < 4.

(3) Ethyl acetate is hydrolysed in the presence of acidified water forming
alcohol and acetic acid. Suppose a gram molecules of acetic acid are used to

inaugurate the hydrolysis of b gram molecules of ethyl acetate, show that

Wilhelmy's law leads to

dx 1 b(a + x)= kj(a + x)(b
-

x) ;
or -r logioa

(fr
_ x

)

= constant ;

and if a gram molecules of some other acid are used as "
catalytic

"
agent,

dx 1 / b k^ + fcjxN

ft
= (V + V) (6 -

x) ; or ~

t
.

logi^^TJ J^a )
= constant -

See Ostwald, Joiirn. filr prakt. Cliem. [2], 28, 449, 1883, for experimental
numbers.

(4) The water reservoir of a town has the form of an inverted conical

fuslrum with sides inclined at an angle of 45 and the radius of the smaller

base 100 ft. If when the water is 20 ft. deep the depth of the water is

decreasing at the rate of 5 ft. a day, show that the town is being supplied
with water at the rate of 72,000 w cubic ft. per diem.

(5) Discuss: "The difference between the method of infinitesimals and

that of limits (when exclusively adopted) is, that in the latter it is usual to

retain evanescent quantities of higher orders until the end of the calculation

and then neglect them. On the other hand, such quantities are neglected

from the commencement in the infinitesimal method, from the conviction

that they cannot affect the final result, as they must disappear when we

proceed to the limit" (Eiicyc. Brit.).

(6) By guessing I find that .r = cos qt is a solution of

hence show that the complete integral is y = Cl
cos qt + Cz sin qt.

(7) Verify the following integration, using (33), page 500,

/' x.dx

(8) Show that the result of integrating jx
~ ldx by parts is jx

~ ldx itself.

(9) Centnerszwer (Zeit. fttr plnjs. Chew., 26, 1, 1896) referred his observa-
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tions on the partial pressure of oxygen during the oxidation of phosphorus in

the presence of different gases and vapours to the empirical formula

Px = po - a log (1 + bx) ; i.e., to p - px = a log (I + bx),

where p denotes the pressure of pure oxygen, px the partial pressure of oxygen
mixed with x / of foreign gas or vapour. Show, with Centnerszwer, that

, _ 3(sy) .

*(*"

where y = p - px . Also show that ft = 184, b = 113 for chlorbenzene when
it is known that

px = 561, 549, 536, 523, 509, 485 ;

when x = 0, -054, -108, -215, -430, -858.

(10) The equations of motion of an electron in a magnetic field (Zeemau

effect) are :

d?x dy d?y dx

w + **m + mx = >w- 2ndj + m*y - -

Vide Larmor's JEther and Matter (Cambridge, p. 347, 1900). The solutions

are:

x = - Ox
sin (pjt + ej) + C2 sin (pz t + e2) ; y.

= Cj cos (pj + e^ + C2 cos (jp2f + e^,

where pl
= x/(w

2 + n2
) + ?i, _p2

= x/(w
2 + n2

)
- ?i.

(11) Since dQ = Cv . dQ + L . dv,

with the notation of 26, show that

dU = (L -
p}dv + Cv .d6,

and demonstrate that if dU is a complete differential dQ is not.

(12) It is not difficult to show (by the aid of a diagram) that the equation
of motion of a pendulum swinging through a finite angle is

where 6 represents the angle described by the pendulum on one side of the

vertical at the time t reckoned from the instant the pendulum was vertical
;

g denotes the constant of gravitation, I the length of the string. Hence show

d0 l2q \~~ql

~
dt
= ~

\f(cos 6 - cos a)
= -

2^/^sin
2

g
- - sin2

g

where a is the value of 6 when d0jdt 0, i.e., a is the angle through which the

pendulum oscillates on each side of the vertical. Show that we reject the
" + "

root because decreases as t increases. The expression on the right

can be put into a simpler form by writing sinU = sin a . sin <. Hence show

that if t represents ^ of the period of oscillation (i.e., of a double swing)

If a = e, sin</>
= 1, and .. $>

=
|ir. Hence show that "a pendulum beating

seconds when swinging through an angle of 6 will lose 11 to 12 seconds a

day if made to swing through 8 and 26 seconds if made to swing through
10" (Simpson's Fluxions, 1737).

If we were studying the time required by the pendulum to pass through
different arcs we should alter the value of 6 and of

<f> accordingly.

Show that for small oscillations the period is 2ir ^TJg (page 323) and the

first approximation in the correction for amplitude of swing is -f | sin- ia.
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(13) Show that .r* is a maximum when x = c.

(14) If V = y\ y, 1 , show that |T+ |Z + |? = o.

U *, i|

(15) Show that the non-periodic e
~ ^ may be expanded in the definite

integral
2 r

00

e
~ ** = j= I e

~ A2
. cos 2\x . d\,VJ

each element of which is periodic.

(16) The equation
I = x(e*V*

- e -
P*),

represents the relation between the length I of the string hanging from two

points at a distance s apart when the horizontal tension of the string is equal
to a length x of the string. Show, by Newton's rule, that x = 130-96 when
I = 22 and s = 20.

(17) Show that the equation in the preceding example may be written in

the form llu 4- 10 sinh u = by writing u = 10/2, and solved by the aid of

Table IV., page 510.

(18) From the definitions of 26 establish the so-called " Four thermo-

dynamic relations
" between p, v, 8, <f>,

when any two are taken as independent
variables.

(19) Find by means of a diagram what is wrong with this integration

? dx _
./o(^-l)

2
"

(20) The length of the first whorl of Archimedes spiral 2irr = aQ is 3-3885a.

Verify this.

(21) A submarine telegraph cable consists of a circular core surrounded by
a concentric circular covering. The speed of signalling through this varies as

1 : x2
log x

~ J
, where x denotes the ratio of the radius of the core to that of the

covering. Show that the fastest signalling can be made when this ratio is

0-606.

(22) If unit charge of electricity of potential V = r
~ l at a point (x, y, z) is

concentrated at the centre of the sphere

(
X _ a)2 + (y _

6)2 + (
z _ C)2

_
,.2>

show that the potential V satisfies Laplace's equation.

(23) Show that the surface tension of a liquid depends only on the

temperature and is independent of the pressure (Selby's problem, Phil. Mag.

[5], 31, 430, 1891).

(24) Show by triple integration that ^abc represents the volume of a

tetrahedron bounded by the three coordinate planes and the plane

-+!+ f = l -

a b c

(25) Referring to the first five lines of 150, page 368, show graphically

that

J"
= 2 /(*)<**> . . . provided /(*)=/(-*);
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(26) If g-if-l-i.ff-i !--
-
^ + Car-.

(27) .Be footnote, page 70. Represent Dalton's and Gay Lussac's laws in

symbols. Show by mathematical reasoning that if second and higher powers
of ad are outside the range of measurement, Dalton's law, v = vQeoS t

is equiva-

lent to Gay Lussac's, v = v (I + ad).

(28) From certain measurements it is found that if

x = 618, y = 3-927 ;
x = 588, y = 3-1416

;
x = 452, y = 1-5708..

Apply Lagrange's formula (2), page 251, in order to find the best value to

represent y when x = 617. Ansr. 3-898.

(29) Interpret :
" Common integration is only the memory of differentia-

tion . . . the different . . . artifices by which integration is effected, are

changes, not from the known to the unknown, but from forms in which

memory will not serve us to those in which it will
"

(De Morgan, Trans.

Cambridge Phil. Soc., 8, 188, 1844).

(30) Re page 269. Transform the integral jjdydx into jjrdrdO when
x = r cos 0, y = r sin (1), page 94. Hint. Differentiate the last two equa-

tions. If y is constant during the x differentiation dy = 0. Hence eliminate

d6 to get the value of dx in terms of dr. Similarly, mutatis mutandis, for the

value of dy.

(31) If
fl^j =by -cx,y = x + C^ 6

/5
"

+ C#-**i, as in Gray's

Absolute Measurements in Electricity and Magnetism, p. 248, 1888.
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Abbreviation (symbols), 8, 9, 10, 11, 24,

36, 37, 38, 56, 238, 243, 454, 483, 495.

(See symbols of operation. )

Abegg's formula, 283.

Abel, 385.

Abscissa, 64.

axis, 63.

Absolute errors, 454.
- measure of precision, 430.
- term (of equation), 386.

values, 238.

zero, 9.

Absorption of light, 45.

Acceleration, 7, 13.

negative, 7.

positive, 7.

Accidental errors, 427.

Acetylene, 493.

Acnode, 137.

A.Mition, 485.

Adiabatic, 211.

elasticity, 92.

expansion, 211.
- work by, 211.

Adrain, 429.

Agamennoue, 453.

Aggregation. States of, 125.

Airy, 343, 430.

A Ip -bra. Fundamental laws of, 304.

Algebraic functions, 22.

differentiation of, 22-30.

Alternando (ratio), 106.

Amplitude, 188.

of damped vibrations, 327.

Analogies of Napier, 502.

Analysis, harmonic, 357.

Andrews, 399.

Angle. Complement of, 498, 499.

supplement of, 498, 499.

vectorial, 93.

Anglo. Circular measure of, 494.

limiting values of, 499.

measurement of, 493.

negative, 499.

radian measure of, 493.

Anti-differential, 156.

Aperiodic motion, 323, 326.

! Appleyard and Walker, 207.

I Approximate calculations, 222, 483.

, integration, 263.

solution of equations, 388.

Approximation formulae, 486.
1 Arago and Biot's formula, 56.

Arc of circle. Length of, 491.

Archimedes' spiral, 96, 525.

Area of circular sector, 491 .

i segment, 491.

curvilinear figures, 491.
-

ellipse, 491.

irregular figures, 491.

parabola, 491.

parallelogram, 491.

polygon, 491.

rectangle, 491.

rhombus, 491.

similar figures, 491.

surfaces of revolution, 192.

trapezium, 491.
-

triangle, 491.

spherical, 491.

Areas of curves, 177.

Arithmetical mean, 434, 464.

Arrhenius* viscosity formula, 263.

Association. Law of, 304.

Asymptotes, 137, 139.

!
of hyperbola, 87.

; Atom. K
Atomic weights, 454, 457.

Auxiliaries, 472.

Auxiliary equations, 308.

i Average error, 440.

velocity. >.

Axes. Coordinate, 63, 102.

oblique, 63.
- of hyperbola, 81.

rectangular, 63.

transformation of, 74

Axis. Abscissa or

major (ellipse), 79.

minor (ellipse), 79.

of imaginaries, '_'7.">

of reals, 275.

of revolution, 192.

ordinate or y-, 64.
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The numbers refer to payes.

Babinet and Housel, 485.

Bacon, 2.

Baker, 189.

Balance. Null or zero point of, 250.
Ballistic galvanometer, 323.

Bancroft, 97, 99, 217.

Base (of logarithms), 34.

Bayer's strain theory, 492.

Baynes, 415.

Berkeley, 19.

Bernoulli's equation. 297.

series, 233.

Berthelot, 1.

and Gilles, 204.

Berthollet, 157, 204.

Bessel, 251, 430.

Bessel's equation, 358.
- formula, 438.

functions, 358.

Beta function, 191.

Binomial series, 228.
-

theorem, 22, 228.

Biot and Arago's formula, 56.

Biot's formula, 39.

Biquadratic equations, 386.

Bodenstein, 203, 206.

Bolton, 234.

Boole, 252, 266, 292.

Bosscha's formula, 47.

Boyle and Gay-Lnssac's law, 111.

Boyle's law, 15, 17, 30, 62, 119, 208, 488.

Boynton, 62, 214.

Boys' water pipes, 149.

Bradley, 430.

Brauner, 114.

Break, 119.

Bremer, 250.

Briggsian logarithms, 36.

Bruner and Tolloczko, 384.

Bunsen and Roscoe, 4, 46, 130.

Burgess, 269.

Byerly, 359, 370.

C-discriminant, 302.

Calculations, approximate, 222, 483.

Calculus of finite differences, 246.

historical note on, 20.

Calibration curve, 254.

Callendar's formula, 25.

Carbon ring compounds (Bayer's theory),
492.

Cailletet and Colardeau, 124.

Carnot, 19, 21.

Carnot's function, 296.

Cartesian coordinates, 64.

transformation to and from polar,

94, 109.

Casting off decimals, 485.

Catenary, 276, 279, 524.

Cavendish, 441, 477.

Cayley, 302, 490.

Cells for maximum current, 146.

Centnerszwer, 523.

Centre of gravity of cone, 492.

pyramid, 492.

triangular lamina, 492.
Characteristic equation. (See equation of

state.)

Charles, 70.

Charpit, 344.

Chauvenet's criterion, 476, 516.
Chemical action (periodic), 114.

change. Influence of temperature on,.

equilibrium, 203.
- reactions. Velocity of, 46, 197, 203.

dependent, 330.
-

simultaneous, 330.
Chord of circle. Length of, 491.
Christoffel's formula, 28.

Chrystal, 176, 280, 395.

Cissoid, 136.

Circle, 100, 196.

area of, 491.

equation of, 75.

general, 76.

great, 502.

length of arc, 491.

chord, 491.

perimeter, 491.
of curvature, 140.

osculatory, 140.
-

small, 502.

Circular measure. (See radian measure. >
sector. Area of, 491.

segment. Area of, 491.

symmetry, 358.

Clairaut, 157.
Clairaut's equation, 300, 346.

formula, 53, 475.

Clapeyron's work diagrams, 183.

Clark, 467.

Clausius, 4, 421.

Clement and Desormes, 61, 213.

Coexistence of diff. reactions. Principle-
of, 52.

states of aggregation, 125.

Colardeau and Cailletet, 124.

Columns (of determinants), 404.

Combinations, 489.

Common logarithms, 36.

conversion to natural, 37.

Commutation law, 304.

Complanation of surfaces, 192.

Complement of angle, 498, 499.

Complementary function, 306, 316, 347.

Complete differential, 58, 295, 524.

elliptic integrals, 189.
-

integral, 288, 342.

solution of diff. equations, 288,

Complex number, 175.

quantity, 175.

Componendo (ratio), 106.

et dividendo, 106.

Composition of harmonic motions, 114.

Compound events, 418.

interest, 44.
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The numbers rtfer t /"/>*.

Compound interest law, 40, 47, 283, 284.

Compression, coefficient of, 6, 7.

Comte, 2.

Concavity of curves, 133, 139.

Concentration of solutions. Representa
tion of, 68.

- Etard's method, 68.

Gay Lussac's method, 68.

Conditional equations, 172, 386.
Conditioned observations, 469.

Conditions limiting, 344.

Cone, 108, 194.

centre of gravity, 492.

equation of surface, 108.
- surface of, 193, 491.

volume of, 492.

Conicoids, 110.

Conic sections, 76.

Conjugate axis (hyperbola), 81.

determinant, 411.
-

point, 137, 139.

Consistency of equations, 405.

Constant, 15.

coefficients. Linear ditf. equations
with, 307, 347.

errors, 451.

of integration, 159.

evaluation of, 162.

of proportion, 487.
of variation, 487.

Constants. Elimination of, 288.

evaluation of, 255.

graphic method, 261.

Constituents of determinant, 402.

Contact of curves, 238.

orders of, 236.

Continuity, 118.

Continuous functions, 118.

Convergency of Fourier's series, 369.

Converging series, 218, 369.

Convertendo (ratio), 106.

Conversion of natural to common logs., 39.

common to natural logs., 39.

Convexity of curves, 133, 139.

Cooling curves, 128.

of iron, 128.

law of. Dulong and Petit on, 43.

Galitzine on, 44.

Newton on, 41.

Stefan on, 44.
- Winkelmann on, 42.

Coordinate axes, 63, 132.

transformation of, 74.
-

planes, 102.

Coordinates, Cartesian, 64.

generalized, 115.
-

polar, 93.

transformation, polar to Cartesian, 93,
109.

- Cartesian to polar, 93, 109.

trilinear, 97.

Correction for weighing in vacuo, 226.
-

terms, 224.

Corresponding states, 400.

Cos x, 496.

Cosec x, 495.
( '"secant, 495.

hyperbolic, '27'.',.

Cosech x, 273.

graph of, 275.
Cosh x, 273.

graph of, 275.

Cnsiiu-, 495.
-

hyperbolic, 273.

numerical values of, 280, 511.
-

series, 229, 363.
- Euler's exponential, 271.

Cosines direction, 103.

Cot x, 494.

Cotangent, 494.

hyperbolic, 273.

Coth x, 273.
- graph of, 275.

Cotes and Newton, 264.

Cottle and Noyes, 202.

Criterion for the rejection of suspected
observations, 495.

Chauvenet's, 496, 516.
-

Lagrange's, for maxima and minima,
240.

- of integrability, 58, 290, 317.

Critical point, 400.

of cooling curve, 128.

temperatures, 124, 125.

Crompton, 122.

Crookes, 207, 225, 445, 447.

Crystallography, 135, 501.

Cubature of solids, 193.

Cube roots. Tables of, 517, 518.

Cubic equations, 386.

Cubical expansion. Coefficient of, ."."..

Current. Arrangement of cells for maxi-

mum, 146.

extra at make, 328.

Curvature, 139.

circle of, 140.

direction of, 142.

mean, 140.

radius of, 141.

total, 139.

Curve calibration, !'."> I.

definition of, 65.

equation of, 65.

harmonic, 135.

imaginary, 176.

logarithmic, 138, 180.

probability, 135, 429, 441.

sine, 112, 181.

Curves. Areas of, 177.

concavity of, 133, 139.

contact of, 235.

orders of, 236.

convexity of, 133, 139.

critical points of cooling, 128.

equipotential, 304.

family of, 101.

lengths of, 186, 491.

magnetic, 304.

LL
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TJie numbers refer to pages.

Curves, orders of, 99.

plotting, 66, 124.

Pickering on, 125.

rectification of, 106.

solubility, 66, 67.

Curvilinear figures. Area of, 491.

Cusp locus, 303.

Cusps, 131, 136, 139.
- keratoid (or ceratoid), 136.

rhamphoid (or ramphoid), 137.

Cylinder, 108.

equation of surface, 108.

surface of, 491.

volume of, 492.

Cylindrical harmonics, 358.

D'Alembert, 21.

D'Alembert's equation, 348.

Dalton's law, 47, 70, 384, 526.

Damped vibrations, 323, 326.

amplitude of, 327.

period of, 326.

Damping ratio, 327.

De Morgan, 12, 526.

Dead-beat galvanometer, 323.

Decrement logarithmic, 327.

Definite integrals, 153, 183, 369.

evaluation of, 179.

Degree of diff. equation, 289.

Degrees, 493.

of freedom, 115.

Demoivre's theorem, 280, 505.

Dependent chemical reactions, 330.

variables, 5, 15.

Descartes, 64, 416.

Descartes' rule of signs, 387.

Decimals. Casting off, 485.

Desormes and Clement, 61, 213.

Determinants, 402.

conjugate, 411.

constituent of, 402.

differentiation of, 411.

element of, 402.

expansion of, 405.

multiplication of, 410.

order of, 402.

properties of, 407.

skew, 411.

symmetrical, 411.

Diagrams. Concentration-temp., 98.

triangular, 97.

work, 182.

Clapeyron's, 183.

Difference. Probable error of a, 442.

Differences. Calculus of finite, 246.

orders of, 246.

table of, 246.

Differential, 8, 20, 523.

coefficient, 5, 58.

calculation from experimental data,
247.

higher, 14.

second, 14.

Differential coefficient, third, 14.

complete, 58, 295, 524.

! equation, 156, 283, 288.

Bernoulli's, 297.

I Clairaut's, 300, 346.

i complete. Solution of, 288.

degree of, 289.

exact, 289.

linear, 317.

solution of, 290.

test for, 289, 318.

Forsyth's, 298.

general solution of, 288.

I genesis of, 288, 340.

geometrical meaning of, 286.

homogeneous, 284.

linear, 315.

partial, 347.

linear (first order), 296.

constant coefficients, 307.

nth order, 305.

partial, 347.

solution of, 297.

variable coefficients, 315.

nonhomogeneous, 284.

linear, 348.

order of, 289.

ordinary, 289.
-

partial,' 289, 340.

particular solutions of, 289, 342.

physical meaning of, 286.

simultaneous, 332, 336.

solution of, 288.
- by differentiation, 298.

by separation of variables, 283.

-in series, 355.

total, 339.
- exact, 58.

Differentiation, 15, 17.

integration by, 373.
- Leibnitz' method, 19, 20, 523.

logarithmic, 37.

Newton's method, 19, 21, 523.

of algebraic functions, 22-30.

of angles, 33.

of determinants, 411.

of exponential functions, 38.

of hyperbolic functions, 277.

of integrals, 373.

of inverse trig, functions, 33.

of logarithms, 35.

of trig, functions, 31.

partial, 50.

solution of diff. equations by, 298.

successive, 47.

partial, 57.

Diffusion experiments. Fick's, 380.

Graham, 380.

Loschmidt, 384.

Soret, 220.

Stefan, 382.

Weber, 382.

Fourier's linear law of, 374.

Dimensional geometry, 101.
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Dimensions, two, 65.

three, 101.

Directrix, 95.

(parabola), 76.

Direction cosines, 103.

of curvature, 142.

Discontinuity, 118.
- with breaks, 119.

with change of direction, 124.

Discontinuous functions, 120.

Discriminant, :i02, 388.

Dissociating gases. Work of expansion,
209.

Distribution of molecular velocities. Max-
well's law of, 448.

Distribution law, 305.

Divergent series, 218.

Division, 485.

shortened, 485.
- by logarithms, 480.

Donkin, 96.

Dostor's theorem, 409.

Double integrals, 195.

weighing. Gauss' method, 250.

Duhem, 117, 127.

Dulong, 483.
- and Petit, 43, 254, 443.

Dumas, 447, 459, 463.

Durand's rule, 267.

Dividendo (ratio), 106.

et componendo (ratio), 106.

e* e *, e***, t~A . Numerical values of,

518-519.

Eccentricity, 95.

Edgeworth, 435, 477.

Elasticity adiabatic, 92.

isothermal, 92.

volume, 92.

Electric current. Cells for maximum, 146.

Electrodynamorueter, 181.

Element (leading) of determinant, 405.

Elements of determinant, 402.

surface, 177.

volume, 196.

Eliminant of equations, 405.

Elimination, 407.

equations, 473.

of constants, 288.

of functions, 340.

Ellipse, 78, 100, 142, 179, 188.
- area of, 491.

equation of, 78.

of tangent of, 86.

length of perimeter, 491 .

properties of foci, 86.

shape of, 79.

Ellipsoid, 108, 110.

Ellipsoidal harmonics, 359.

Elliptic integrals, 188, 524.

complete, 189.

first class, 189.

second class, 189.

third class, 189.

Empirical formula, 249, 2.Vj.

Envelope, 142, 301.

locus, 302.

Epoch, 113.

Equal roots of equation. Separation of,
391.

Equation, characteristic, 59.

graph of, 67.

locus of, 67.

of circle, 7'..

graph of, 76.

of condition, 172, 386.
of cone, 108.

of curve, 65.

of cylinder, 108.

of ellipse, 78, 86.

of hyperbola, 87.

rectangular, 88.

of normal, 84.

of parabola, 77.

of sphere, 108.

of state, 59.

of straight line, 68.

intercept form, 70.

tangent form, 70.

of subnormal, 84.

of subtangent, 84.

of surface (general), 106.

of tangent, 84.
- of roots of, 385.

of solution of, 385.

test for, 394.

Equations, auxiliary, 308.
-

biquadratic, 380.

consistency of, 405.

cubic, 386.

differential. (See differential.)

eliminant, 405.

elimination, 473.

gas, 4, 89.

identical, 172, 386.

literal, 386.

normal, 471.

numeral. (See numeral.)
observation, 256, 471.

of vibratory motion, 322.

quadratic, 386, 387.

Equiangular spiral, 95, 188.

Equilateral hyperbola, 88.

Equilibrium, chemical, 203.

van't Hotfs principle of mobile, 216.

false, 47.

Equipotential curves, 304.

Equithernuil surfaces, 374.

Error, fractional, 4 .">.".

function, 2>!'.

Errors, absolute. 4fl.

accidental, l'J7'.

average, 440.

constant, 451.

large, 431.

law of, 428.

Gauss', 432.

mean, 439, 440, 473.
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Errors, mean, square, 440.

of observation, 426.

percentage, 455, 486.

personal, 452.
-

probable, 436.

numerical tables of, 512, 513.

of a difference, 442.

of a product, 442.

of a proportion, 443.

of a quotient, 443.

of a sum, 442.

proportional, 453.

relative, 455.

systematic. (See constant.)

weighted, 464.

Esson and Harcourt. (See Harcourt.)
Etard, 68.

Eulerian integral (first class), 191.

(second class), 190.

Euler's exponential cosine series, 271.

sine series, 271.

theorem, 56, 293, 340.

Evaluation of constants, 255.

graphic method, 261.
. of ir, 230.

Event, compound, 418.

Everett, 249, 434.

Evolute, 141.

Evolution by logarithms, 481.

Exact differential, 58.

equations, 289.

linear, 317.
- test for, 289, 318.

For syth's, 319.

solution of, 290.

Expansion. Coefficient of, 6, 7.

cubical, 55.

of determinants, 405.

of dissociating gases. Work of, 209.

of gases. Adiabatic, 211.
- work of, 209, 211.

isothermal, 208.

work of, 208.

Explicit functions, 413.

Exponent, 471.

Exponential functions, 38.

differentiation of, 38.

series, 230.

cosine, 271.

sine, 271.

theorem, 230.

Extension of Fourier's theorem, 366.
-

Taylor's theorem, 236.

Extra current at make, 328.

Extraneous solutions (of equations), 394.

Extrapolation, 249.

Factorials, 24.

Factors integrating, 58, 291.

to find, '292.

Fahrmann, 197.

False equilibrium, 47.

Families of curves, 101.

Faraday, 3, 454.

Fermat's principle, 147, 241.

Pick's diffusion experiments, 380.

equation, 4, 376.

solution of, 376.

law, 375, 376.

Fidelity of observations, 445.

Figures. Area of curvilinear, 491.

irregular, 491.

similar, 491.

significant, 484.

volume of similar, 492.

Finite differences. Calculus of, 246.
First integrals, 318.

law of thermodynamics, 61, 295.
Focal radius (ellipse), 78.

(parabola), 76.

Focus, 95.

of ellipse, 78.

of hyperbola, 80.

of parabola, 76, 85.

Formula, 252.

for thermometer stem, 90.

Formulae approximation, 486.
-

empirical, 249, 252.

evaluation of constants in, 255.

interpolation, 249.

mensuration, 490.

parabolic, 264.

reduction, 170, 184.

theoretical, 252.
-

trapezoidal, 260.

trignometrical, 499.

Forbes, 4.

Forced vibrations, 328.

Forces generalized, 117.

Forsyth, 344.

test for exact equations, 319.

Foucault, 454.

Fourier, 269, 370.

Fourier's equation, 4, 320.

integrals, 368.

linear diffusion law, 374.

series, 361, 380.
;

convergency of, 369.

,

extension of, 366.

! theorem, 360.

Fractional error, 455.

index, 482.

Fractions, partial, 171.

j integration by, 171, 172, 173.
! vanishing, 242.

Free path, 422.

i mean, 422.
'

Freedom, degrees of, 115.

! Fresnel, 3.

Fresnel's integrals, 190.

Friction, coefficient of, 322.

Fuhrmann, 197.

Function, 15, 252.

Functions. Elimination of, 340.

Fundamental laws of algebra, 304.

Fusibility. Surface of, 97.
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Galitziue, 44.

Galvanometers, ballistic, 3J.
dead-beat, 323.

Gamma function, 190, 269.

numerical values of, 191, 507.
Gas equation, 4, 89.

Gases, adiabatic expansion of, 211.
work of, 211.

dissociating. Work of expansion, 2<>n.

isothermal expansion of, 208.
work of, 208.

-
kinetic, theory of, 421, 448.

viscosity of, 328.

Gauss, 175, 269, 327, 429, 430, 474.

and Weber, 435.

Gauss' equation, 359.

interpolation formula, 251.

law, 386.

of errors, 432.

method of double weighing, 250.

solving observation equations, 471.
measure of precision, 436.

series, 359.

Gay Lussac and Boyle's law, 111.

composition of solutions, 68.

Gay Lussac's law, 17, 70, 488, 526.
Gee and Wrapson, 484.

Geitel, 282, 335, 336.
General integral, 343.

mean, 465.

Generalized coordinates, 115.

forces, 117.

Genesis of diff. equations, 288, 340.

Geometrical meaning of diff. equations,
286.

series, 219.

Geometry in three dimensions, 101.
in two dimensions, 63.

in space, 101.

Gerling, 477.

Gibbs, 342.

thermodynamic surfaces, 111.

Gilbert, 190.

Gilles and Berthelot, 204.

Glaisher, 267.

Goldschmidt's equation, 174.
Gradient temperature, 374.
Graham's diffusion experiments, 380.

law, 220.

Graph cosech x, 27H.

cosh x, 275.

coth x, 275.
of equations, 67.

sech x, 275.
sinh x, 276.
tanh x, 275.

Graphic interpolation, 68, 2."> t.

methods, evaluation of constants, 261.

solving numerical equations, 388.

representation, 66.

of work, 182.

Gravity centre of, of cone, 4!2.

pyramid, 492.

triangular lamina. I! '2.

Gray, 902,
and Mathews, ."..".;.

Great circle.

<;iv;niiiii. r."

Gregory's series, 221'.

Gudermunnians, 27 J, ;"')."..

Guldberg ami Waap-. 1T.7. 201. 2!.'.

Hagen, 429, 470.

Halley's law, 45, 213.

Hallstrom's formula, 148.

Hambly and Walker, 207.
Harcourt and Esson, 46, 262, 29>

334, :V.',n.

Harmonic analysis, 357.

curve, 112, 135.

cylindrical, 358.

ellipsoidal, 359.

motions. 111.

simple, 112.

composition of, 114.

spherical solid, 358.

surface, 358.

toroidal, 358.

zonal, 359.

Hatchett, 490.

Heat, molecular specific. 7_.
-

specific, 7, 25, 61.

Heaviside, 374.

Helmholtz's equation, 284, 314.

Henrici, 362.

Henry, 205.

Henry's law, 66.

Herman, 490.

Herschel, 256. 421 1.

Hertz, 3, 85.

Hessian, 412.

Higher differential coefficients, 14.

Hilton, 401.

Hinrichs. 4:',4.

Him. 224.

Historical note on calculus, 20.

Hoar frost line, 12.\

Holman, 476.

Homogeneous diff. equations, 284.

linear, 315.

partial, 347.

equations, simultaneous, 402.

functions, 56.

Euler's theorem, 56, 293, 340.

Hood, 202, 207.

Hopkinson, 2.

Horner's process for solving numerical

equatimi>.
Horstmann. 12o. 217.

Housel and Babinet, 485.

Hydrates in solution. 121.

Hyperbola, 80, 100

equation of, 80.

of tangent of, 87.

equilateral, 88.

rectangular, 88, ISO. 279, 304.
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Hyperbola, shape of, 81.

Hyperbolic cosecant, 273.

cosine, 273.

cosines. Numerical values of, 280,
511.

cotangent, 273.

functions. Differentiation of, 277.

integration of, 277.

inverse, 277.

properties of, 504.

transformation to and from trig.,

276.

logarithms, 180.

secant, 273.

sine, 273.

sines. Numerical values of, 280, 510.
-

spiral, 96, 180.

tangent, 273.

Hyperboloid, 108, 110.

of one sheet, 108.

of two sheets, 108.

Hyperelliptic integrals, 189.

Hypergeometric series, 359.

Hypotheses, working, 2, 42-44, 282.

Ice line, 125.

Identical equations, 172, 386.

Illusory functions, 242.

Imaginaries. Axis of, 275.

Imaginary axes (hyperbola), 81.

curve, 176.

periodic functions, 274.

point, 175.

quantities, 175, 274.

semi-axis (hyperbola), 81.

Implicit functions, 413.

Impulses. Principle of superposition of

small, 52.

Incomplete reactions, 203.

Indefinite integrals, 153.

Indeterminate functions, 242.

Independence of diff. processes. Prin-

ciple of mutual, 52.

Independent, variable, 5, 15, 340.

Index, 479.
-

fractional, 482.

law, 305, 479.
of refraction, 147, 148.

Indices (of crystals), 107.
Inferior limits of integration, 153.

Inflection, points of, 132, 137, 139.

Inflexion, 133.

Influence of temp, on chemical equilibrium,

Infinite series, 218.

integration by, 267.

Infinitesimals, 8, 20, 523.

Infinity, 9, 402.

Initial line, 94.

Integrability. Criterion of, 56.

Integrals, 153.

complete, 288, 342.

definite, 153, 183.

Integrals, definite evaluation of, 179.

differentiation, 373.

double, 195.
-

elliptic, 188, 524.
-

complete, 189.

first class, 189.

second class, 189.

third class, 189.

Eulerian, first, 191.

second, 190.

first, 318.

Fresnel's, 190.

Fourier's, 368.

general, 343.

hyper-elliptic, 189.

indefinite, 153.
-

multiple, 194.

particular, 306, 310, 316, 347, 351, 370.
-

probability, 270, 431.

numerical values of, 514, 515.

Soldner's, 190.

space, 155.

surface, 195.

table of, 157, 278, 506.

time, 155.
-

triple, 196.

ultra-elliptic, 189.

volume, 196.

Integration, 150, 526.

approximate, 263.
- between limits, 183, 369.

by differentiation, 373.

by infinite series, 267.

by partial fractions, 171.

by parts, 168.

by substitution of new variable, 164,
284.

by successive reduction, 169.

constant of, 159.

evaluation of, 162.

formulae, Newton-Cotes', 264, 267.

limits of, 153.

of hyperbolic functions, 277.

simple methods of, 159.

successive, 194.

Intercept form of equation of a straight

line, 70.

Interest, compound, 40.

law of, 40, 47.

Interpolation, 249.

formula, 249.

Gauss', 251.
-

Lagrange's, 251.

Stirling's, 247.

graphic, 68, 254.

Inverse hyperbolic functions, 271.

sine series, 230.

trig, functions, 33.

differentiation of, 33.

Invertendo (ratio), 106.

Involute, 141.

Involution by logarithms, 481.

Ionic motion, 330.

Iron. Cooling curves of, 128.
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Irrational numbers, 188.

quantity, 176.

Irregular figures. Area of, 491.

Irreversible reactions, 203.

Isobars, 90.

Isochores, 90.

Isometric lines, 90.

Isopiestic lines, 90.

Isotherm of dissociation, 91.

Isothermal, 90, 208.

elasticity, 92.

expansion of gases, 208.

work of, 208.

Jacobian, 412.

Jevons, 118, 217, 416, 427.

Johnson, 1.

Joubert and Mascart, 190.

Joule, 466, 477.

Joule's law, 155, 459.
.In, Non and Walker, 175, 200.

Kant, 1.

Kauttman, 490.

Kelvin, 3, 40, 269, 307, 360, 370, 373, 375,
431.

Kepler, 3.

Keratoid cusps, 136.

Kew (thermometer) certificate, 453.

Kleiber, 420.

Kinetic theory of gases, 421, 448.

Kipping and Perkin, 461.

Kirchhoff, 420, 421.

Kistiakowsky, 207.

Kohlrausch, 259, 327.

Kooij. 201.

Kopp, 148. 2:. I.

Kramp, 24, 190, 269.

Kundt. I:
1

,:..

Lag, 113, 329.

Lagrange, :m.
on the limits of Taylor's theorem, 251.

Lagrange's criterion for maxima and

minima, 240.

interpolation formula, 251, 526.

Lamb, 166.

Lame's equations, 359.

functions, 359.

Lamina. Centre of gravity of triangular,
492.

Langley. K'..

Laplace, 417, 420. 421. 12!'.

Laplace's equation, 358, 370. .Vj."..

Large errors, 431.

Larmor, 524.

Law association, 304.

commutation, 304.

compound interest, 40. 47, 283, 284.

distribution, 305.

index, 305.

Law of error-
- Ga
of indn .--,. I,. i.

of thermodynamics (Hrst), 61, 295.
1 1. HI, 524.

Laws of algebra, 304.
Le Chatelier, 72, 1 1 1 . _' 1 7. I.'. I.

- -Austen pyrometer. _'." L
Le Chatelier's theorem, 217.

Lead (of current), 113, 329.

Leading element of determinant
Least squares. Method of, 257, 433, 468,

524.

Lees and Schuster. _'."_'.

Legendre, 190. I ; ;.

Legendre's coefficients,

equation, 317, 358.

parameter, 189.

Legendrians, 359.

Leibnitz' series, 229.
- theorem, 49, 313.

symbolic form of, 50.

Lenmiscate, 1 '!."..

Lemoine, 267, 336.

Length of arc of circle, 45*1.

chord of circle, 491.

curves, 186.

normal, 84.

perimeter of circle, 491.
-

ellipse, 491.

tangent, 84.

Lenz's law, 323.

Liagre, 417.

Light. Absorption of. 46.

refraction, 147.
-

reflection, 241.

Limit, 183. (See limiting vain-

Limiting conditions, -U \.

-
values, 11, 495, 499.

of angles, 495.

Limits. Integration between, 183.
of integration, 153.

of Taylor's theorem, 233.

Line, initial, 94.

Line-, isometric, 90.

isopiestic, 90.

straight. (See straight.)
Linear diff. equations (tirst order), 296.

-
(/<th order), 305.

constant coefficients, 307, 347.

exact, 317.

homogeneous, 315.

partial. :U7.

nonnomogeneous, 348.
solution of, I"."..

- variable coefficients, 315, 351.

equations, simultaneous, 403.
law of diffusion, Fourier's. :\-\.

observation equations. Gauss' method
of solving, 4/1.

Mayer's n iet IK.. l ,t sohii _

Literal equations.
Location of roots of equations. Sturm's.

method, 392.
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Lock, 176.

Locus, cusp, 303.

envelope, 302.

node, 303.

of equation, 67.

tac. 302.

Lodge,' 490.

Lcewel, 68.

Logarithmic curve, 138, 180.

decrement, 327.

differentiation, 37.

functions, 35.

differentiation of, 35.
-

paper, 262.

series, 233.

spiral, 95.

Logarithms, 34, 479, 484.

Briggsian. (See common.)
common, 36.

conversion common to natural, 37.

natural to common, 37.

division by, 480.

evolution by, 481.

hyperbolic, 180.

involution by, 482.

multiplication by, 480.

Naperian. (See natural.)

natural, 36.

table of, 520.

Losanitsch, 490.

Loschmidt and Obermeyer, 55.

Loschmidt's diffusion experiments, 384.

Lower limits of integration, 153.

Lummer and Pringsheim, 214.

Lupton, 252, 259.

Maclaurin's series, 227, 256.
- theorem, 224, 226, 232, 242.

Magnetic curves, 304.

Magnitude, orders of, 8.

Magnus' formula, 38.

Major axis (ellipse), 79.

Malard and Le Chatelier's formula. 72.

Mallet, 421.

Marconi, 85.

Marek, 459.

Marignac, 466.

Mascart and Joubert, 190.

Material point (def.), 190.

Mathematics and experiment, 3.

and science (Kant on), 1.

difficulties of, 1.

faith in, 233.

guessing in, 201, 253.

limitations of, 2.

object of, 3.

Mathews and Gray, 359.

Matthiessen's formula, 29.

Matrix (determinant), 404.

Maxwell, 3, 328.

Maxwell's law of distribution, 440.

Maximum electric current. Cells for,
146.

Maximum values of functions, 129, 130,

139, 144, 524, 525.
-

Lagrange's criterion for determin-
ation of, 240.

Taylor's theorem for determination

of, 237.

Mayer's formula, 62.

method of solving observation equa-
tions, 475.

McGinnis, 385.

Mean, arithmetical, 434.

error, 430, 440, 473.

(See probable error.)
free path, 422.

general, 465.

probable, 465.

square. Error of, 440.

velocity. (See average.)
Measure of angles, circular, 494.

radian, 494.

of precision, absolute, 430.

Gauss', 430.

Measurement of angles, 493.
Mechanical quadrature, 266.

Mendeleeff, 222.

on hydrates in solution, 121.

Newland's law, 114.

Mendeleeffs formula, 25.

Mensuration formulae, 490.

Merriman and Woodward, 176, 280.

Method of averages, 451.

Metastable states, 126.

Method of least squares, 257, 433, 468,
524.

statistical, 451.

Meyer, 214, 328, 421.
- and Seubert, 466.

Michell, 420.

Minchin, 124.

Minimum values of a function, 129, 130,

139, 144.

Lagrange's criterion for, 240.

Taylor's series for determination

of, 237.

Minor (determinant), 405.

axis (of ellipse), 79.

Minutes, 493.

Mirrors, parabolic, 85.

Mobile equilibrium. Van't HolFs prin-

ciple of, 216.

Modulus (logarithms), 37, 188.

Molecular specific heat, 72.

velocities. Distribution of, 448.

Morley, 463.

Mosander, 207.

Motion, aperiodic, 323, 326.

harmonic, 111. (See periodic.)

simple, 112.

ionic, 330.

periodic, 111. (See harmonic.)
vibratory. Equations of, 322.

Motions. Composition of harmonic, 114.

Multiple integrals, 194.

points, 135, 139.
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Multiple reflection '241.

valued functions, 275.

Multiplication, 485.

by logarithms, 480.

of determinants, 410.

shortened, 485.

Mutual independence of diff. processes,
52.

Napierian logarithms. (See natural.)

Napier's analogies, 502.

Natural logarithms, 36.

conversion to common, 37.

, table of, 520.

vibrations, 326.

Negative acceleration, 7.

velocity, 7.

angles, 499.

Nernst and SchouHies, 42, 52, 85, 86, 91,

209.

Newcomb, 430.

Newlands-Mendeleeff law, 114.

Newton, 230, 481.

Cotes' interpolation formula, 264,
267.

.Newton's formula, 62.

interpolation formula, 251.

law of cooling, 41.

method of solving numerical equations,

390, 525.

second law, 155, 322.

Node locus, 303.

Nonhomogeneous ditf. equations, 284.

linear, partial, 348.

Nordenskjold's solubility law, 47.

Normal equations, 471.

to curve, 84.

equation of, 84.

length of, 84.

Notation, 14.

tfoyes, 201.

and Cuttle, 202.

and Scott, 201.

and Wason, 202.

and Whiting, 384.

Null point of balance, 250.

Numbers, complex, 17"-.

irrational, 188.

rational, 188.

surd, 188.

Numerical equations, 386.

approximate solution of, 388.

graphic methods, 388.

Newton's method, 390.

Horner's method, 395.

values of gamma function, 191, .~>07.

er, *-*, **, e-J, 518-519.

hyperbolic cosines, 280, 511.

functions, 506.

sines, 280, 510.

probability integrals, 514, .">!.'.

probable error factors. ."!:'..

trig, ratios, 497.

Obermeyer and Loschmidt's formula, 55.

( )Mique axes, 63.

Observation equations, 2/>*>, 471.

Gauss' method, solving, 471.

Mayer's method, solving, 47-
r
>.

errors, 426.

Observations, conditioned, 469.

fidelity of, 1 1:-.

rejection of suspected.
Chauvenet's criterion, 476.

weighted, 464.

Ohm's law, 328, 336, 375.

Operation. Symbols of, 15, 304, 31'..

Order of Bessel's functions, 358.

of chemical reactions, 197, 200.

of curves, 99.
- of determinants, 402, 405.

of differences, 246.

of diff. equations, 236.

of surfaces, 109.

Orders of magnitude, 8.

Ordinary diff. equations, 289.

Ordinate, 64.

axis, 64.

Orthogonal trajectories, 304.

Oscillation. (See vibration.)

Osculation, point of, 136, 139.

Osculatory circle, 140.

I Ostwald, 52, 114, 379, 453, 468, 485, 523.
1 Oxygen standard of atomic weights, 454.

I P-discriminant, 302.

Paper logarithmic, 262.

semi-logarithmic, 262.

1 squared, 262.

Lola, 76, 100, 138, 187, 279, 304.

;

area of, 491.

equation of, 77.

i

subnormal to, 85.

subtangent to, 85.

tangent to, 83.

properties of focus, 85.

shape of, 77.

Parabolic formulae, 264.

mirrors, 85.

Paraboloid, 108, 110.

surface of, 193.

Parallelogram, area of, 491.

of velocities, 424.

Parallelepiped of velocities, 424.

volume of rectangular, 492.

Parameters (of crystal), 109.

Legendre's, 189.

variable, 1 12.

Partial diff. equation, 289, 8

linear, 347.

-with constant coettu it

with variable coefficients, 354.

: homogeneous, 347.

nonhomogeneous, ->\^

differentiation, 50.

successive, .">7.

fractions. 171.
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Partial fractions, integration by, 171.

resolution into, 172, 173.

Particular integral, 306, 310, 316, 347, 351,
370.

-
solutions, 289, 342, 350.

superposition of, 370.

Parts, integration by, 168.
- of triangle, 501, 504.

Paths, free, 422.

mean, 422.

Pendlebury, 269.

Pentamethylene, 493.

Perimeter of circle. Length of, 491.
- of ellipse. Length of, 491.

Period of damped vibrations, 326.

of oscillation, 113.

Periodic chemical actions, 114.

functions, 111.

imaginary, 274.

motion, 111.
-

time, 113.

Petit. (See Dulong.)
Permutations, 489.

Perry, 262, 263, 324, 325, 362.

Personal errors, 452.

Peter's approximation formula, 438, 445.

Phase (def.), 98.

Physical changes. Influence of temp, on,
214.

meaning of diff. equation, 286.

Pickering, 122, 124.

Pierce, 476.

Pipes. Boys' water, 149.

Planck, 59.

Plane coordinate, 102.

tangent, 108.

equation of, 108.

trignometry, 493.

Planimeters, 263.

Plotting curves, 66, 124.

Pickering on, 125.

Poincare, 428, 484.

Point, conjugate, 137, 139.
-

critical, 400.

of cooling curve, 128.

d'aret, 137.

imaginary, 175.

material, 48.

multiple, 135, 139.
- of inflection, 132, 134, 139.

of osculation, 136.

triple, 126.

Poisson's equation, 358.

Polar coordinates, 93.

transformation to and from Cartesian

94, 109.

Pole, 94.

Polygon, area of, 491.

Polynomial (def.), 24.

Positive acceleration, 7.

velocity, 6.

Precision. Absolute measure of, 430.

Gauss' measure of, 436.

Preston, 111, 128, 222, 223, 296.

rice's equation, 174.

Primitive, 288.

Principle of coexistence of diff. reactions,
52.

- of least squares, 257, 433, 468.

of mutual independence of diff. pro-

cesses, 52.

of superposition of small impulses, 52.

Mngsheim and Lummer, 214.

Prism, surface of, 491.

volume of, 492.

Probability, 416.

curve, 135, 429, 441.

integral, 270, 431.

numerical value of, 514. 515.

Probable error, 436.

of a difference, 442.

of a product, 442.

of a proportion, 443.

of a quotient, 443.

of a sum, 442.

factors. Numerical values of. 512
513.

mean, 465.

Product. Probable error of, 442.

Projection, 104.

Properties of determinants, 407.

of foci of ellipse, 86.

of focus of parabola, 85.

of hyperbolic functions, 504.

of roots of equations, 385.

of spherical triangles, 502.

of triangles, 500.

Proportion, constant of, 487.

probable error of a, 443.

Proportional error., 453, 455.

parts. Theory of, 234.

rule of, 234.

Prout's law, 421, 441.

Pyramid. Centre of gravity of, 492.

surface of, 491.

volume of, 491.

Pyrometer. Le Chatelier-Austen, 254..

Quadratic equations, 386.

solution of, 387.

Quadrature, mechanical, 266.

of surfaces, 179.

Quantities, imaginary, 175, 274.

irrational, 176.

rational, 176.

Quantity, complex, 175.

real, 175.

Quotient. Probable error of a, 443,

Eadian, 494.

measure of angles, 494.

Radius, focal (ellipse), 78.

(parabola), 76.

of curvature, 141.

vector, 93.
-

(ellipse), 78.
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Ramsay, 91, l.'.o.

and Travers, 478.

Rankiue, 4, 254.

Rapp's formulae, 149.

Rate. (See velocity. )

Ratio.

damping, 327.

Ratios, trignometrical, Ji'l.

limiting values of. 1 !'.">.

numerical values of, 496.

signs of, 495.

Rational quantities, 176.

Rayleigh, 453, 478.

Raymond, 326.

Reactions (chemical), complete, 197.

incomplete, 203.

irreversible, 197.

order of, 197, 200.

reversible, 1 (
.*7.

velocity of, 46, 197.

dependent, 330.

simultaneous, 330.

Real axis (hyperbola), 81.

semi-axis (hyperbola), 81.

quantity, 175.

Reals. Axis of, 275.

Recalescence, 128.

Rectaugle. Area of, 491.

Rectangular axes, 63.
-

hyperbola, 88.

equation of, 88.

parallelepiped. Area of, 492.

Reciprocals. Table of, 518.

Rectification of curves, 186.

Reduction (successive). Integration by,
169.

formulae, 170, 184.

Reech's theorem, 61.

Reference triangle, 97.

Reflection multiple, 241.

of light, 241.

Refraction. Index of, 147, 148.

of light, 147.

Regnault. 121. 2.'4, 453, 467.

Reicher. I'M-J.

Rejection of suspected observations, 475.

Chauvenet's criterion, 476.

Relative error, 405.

zero, 10.

Representation, graphic, 66.

of the composition of solutions, 68.

Etard's method, 68.

Gay Lussac's method. '>

N
.

Restitution. Coefficient of, 322.

Retardation, 13. (See negative accelera-

tion.
)

Reversible reactions, 197, 203.
Revolution. Axis of, 1'.'2.

- solids of, 193.

area of, !'.:;.

surfaces of, 192.

area of. 1 '.'_'.

Rhamphoid cusps. 1 :',;.

Rhombus. Area of, 491.

Riccati's equation,
Riemann and Weber, 259, 36!

Ring compounds. Bayer's .strain theory,
492.

Roberts- Aust.n. i-*.i.

Roozeboom, 97.

Roots, Cube. Tabh- ..r. .".17. 518,

equal. Separation tmm equations, 391.
of equations, 385.

properties of, 3>.">.

if van der Waals' equation, 398.

Sturm's method of locating, 392.
-

square. Table of. :.!;. .'-17.

Roscoe and Bunsen, 4, 46, 130.

Rowland, 466, 477.

Rows (of determinant), 4'>l.

Rucker, 282.

and Thorpe, 224.

Rudberg, 441. 177.

Rule, Durand's, 267.

of proportional parts, ~l :\\.

of signs. Descartes', 387.

of sines, 500, 502.

Simpson's one-third, 264.--
three-eighths. 2HiJ.

trapezoidal, 'Jn7.

Weddle's, 2!;.

Sagrebiu, 202.

Sarrau, 4.

Schontlies and Nern.t. 42. .'.2, 85, 86, 91,
209.

Schuster, 421.

and Lees, 252.

Schwicker, 203.

Scott and Noyes, 201.

Sec x, 495.

Secant, hyperbolic, 273.

Sech x, graph of, 275.

Second differential coefficient, 14.

kind of Bessel's function, 358.-- of surface zonal harmonics, 359.

law of Newton, 155, '!'_'-!.

of thermodyiiiiinit -. 'H. '>'2\.

Seconds, 493.

Sections. Conic, 7'L

Sector. Area of circular. I'.'l .

Segment of circle. Area of, 491.

spherical. Surface of, 491.

Selby, 626.

Semi-axis (ellipse), 79.

(hyperbola), 81.

imaginary. M.
-

real, 81.

Semi-logarithmic paper.
Separation of equal roots from equations,

m.
.f vari.il.!.->. Solution .fdill.

by.

Series, 218.

.Uver-ent, 218.
-

infinite, 218.
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.Series, integration by, 267.

solution diff. equations in, 355.

Seubert and Meyer, 466.

Shape of ellipse, 79.
- hyperbola, 81.

parabola, 77.

Sheet. Hyperboloid of one, 108.

Sheets. Hyperboloid of two, 108.

Siemens' formula, 29.

Significant figures, 484.

Signs. Descartes', rule of, 387.

of trignometrical ratios, 495.

Similar figures. Area of, 491.

volume of, 492.

Simmler and Wild, 376.

-Simple harmonic motion, 112.

Simpson, 524.

Simpson's one-third rule, 264.

three-eighths rule, 266.

Simultaneous chemical reactions, 330.

diff. equations, 332, 336.

equations. Solution of, 406.

homogeneous equations, 402.

linear equations, 403.

Sin x, 495.

Sine curve, 112, 181.

series, 228, 362.

Euler's exponential, 271.

inverse, 230.

Sines, hyperbolic, 273.

numerical values of, 280, 510.

rule of, 500, 502.

Sinh x, graph of, 276.

Single-valued functions, 275, 295.

Singular functions, 242.

solutions, 301, 342.

Skew determinant, 411.

Small circle, 502.

Snell's law, 147.

Soldner's integrals, 190.

Solids. Velocity of solution of, 384.

cubature of, 193.

of revolution, 193.

area of, 193.

Solubility curves, 66, 67.

law. Nordenskjold's, 47.

Solution of diff. equations, 288, 298.

by differentiation, 298.

by separation of variables, 283.

in series, 355.

of equations, 385.

test for, 394.

of exact diff. equations, 290, 317.
of Pick's equation, 376.

of linear diff. equations, 297.

observation equations. Gauss'

method, 471.

Mayer's method, 475.

of numerical equations, 388.

graphic method, 388.

Newton's method, 390.
- Homer's method, 395.

of quadratic equations, 387.

of simultaneous equations, 406.

Solution of solids. Velocity of, 384.

of spherical triangles, 504.

of triangles, 501.

Solutions. Composition of, 68.

extraneous (of equations), 394.

hydrates in, 120.

Crompton on, 122.

Mendeleeff on, 121.

Pickering on, 122.
-

particular, 289, 342, 350.

superposition of, 370.
-

singular, 301, 342.

Soret's diffusion experiments, 220.

Space. Geometry in, 101.

integrals, 155.

Specific heat, 7, 25, 61.

molecular, 72.

Speed. (See velocity.)

Spencer, 1.

Sphere, 108, 194, 196.

equation of surface of, 108.

surface of, 193, 491.

volume of, 492.

Spherical harmonic solid, 358.

surface, 358.

segment. Surface of, 491.

triangles, 502.

area of, 491.

properties of, 502.

solution of, 502.

trignometry, 493, 501.

Spheroids, 110.

Spiral of Archimedes, 96, 525.

equiangular, 95, 188.
-

hyperbolic, 96, 180.

logarithmic, 95.

Sprague, 160.

Square. Error of mean, 440.
- roots. Table of, 516, 517.

Squared paper, 262.

,
Squares. Method of least, 257, 433, 468,524.

|

Standard for atomic weights, 454.

integrals, 157, 278, 506.

State. Equation of, 59.

van der Waals', 398.

States, corresponding, 400.

metastable, 126.

of aggregation. Coexistence of diff.,

125.

Statistical method, 451.

Stas, 443, 444, 452, 453, 466.

Steam line, 125.

Stefan, 44.

Stefan's diffusion experiments, 382.

Stirling, 226, 247.

Stirling's formula, 489.

interpolation formula, 247.

Stone, 476.

Straight line. General equation of, 68.

intercept form, 70.

tangent form, 70.

lines, satisfying conditions, 72.

Strain, theory of carbon ring compounds
492.
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Strutt, 421.

Sturm's functions, 393.

method of locating the roots of equa-
tions, 392.

Subdeterminant, 405.

Subnormal to curve, 84.

equation of, 84.

of parabola, 85.

Substitution of new variable. Integration

by, 164, 284.

Subtangent to curve, 84.

equation of, 84.

of parabola, 8f>.

Subtraction, 485.

Successive differentiation, 47.

integration, 194.

partial differentiation, 57.

reduction. Integration by, 169.

Sum. Probable error of a, 442.

Superior limits of integration, 153.

Superposition of particular solutions, 370.

of small impulses. Principle of, 52.

Supplement of angle, 498, 499.

Surd numbers, 188.

Surface elements, 177.

general equation of, 106.

integral, 195.

of cone, 193, 491.

equation of, 108.

of cylinder, 491.

equation of, 108.

of fusibility, 97.

of paraboloid, 193.

of prism, 491.

of pvramid, 491.
- of sphere, 193, 491.

equation of, 108.

of spherical segment, 491.

zonal harmonics, 359.

Surfaces, 102.

complanation of, 192.

eOjUithermal,
374.

Gibb's thermodyuamic, 111.

of revolution, 108, 192.

area of, 192.

quadrature of, 179.

van der Waals' "^," 111.

Suspected observations. Rejection of,

475.

Chauvenet's criterion, 476. .

Symbolic form of Leibnitz' theorem, 50.

Taylor's theorem, 347.

Symbols of operation, 14, 304, 315.

(See abbreviation. )

Symmetrical determinant, 411.

Symmetry circular, 358.

Tables. (See Contents, pages xiv and xv.)

of differences, 246.

of integrals, 158, 278, 506.

Tac locus, 302.

Tait, 4, 324, 360.

Tan x, 494.

Tangent, form of equation of straight hm-.

hyperbolir-
plane, 108.

-
equation of, 108.

aeries, 229.

to curve, 77, 82.

equation of, 88.
- length of, 84.

- to ellipse. Equation of, 86.

to hyperbola. Equation of, 87.
to parabola. Equation of, 83.

Tanh x. Graph of, 275.

Taylor's series, 232.

for determination, max. and min.,
237.

Lagrange on limits of, 233.
- theorem, 226, 231, 242, 286, 454, 497.

extension of, 236.

symbolic form of, 347.

Temperature, critical, 124.

gradient, 374.
- influence on physical and chemical

changes, 214.

Term, absolute, 386.

Terms, correction, 224.

Tesseral harmonics, 358.

Test for exact equations, 289, 318.

Forsyte's, 319.

for true solution of equations, 394.

Tetrahedron, 492.

volume of, 525.

Tetramethylene, 493.

Theoretical formulae, 252.

Thermodynamic surface of Gibbs, 111.

Thermodynamics, 59, 414, 525.
- first law, 61, 295.

second law, 61, 524.

Thermometer. Exposure formula of, 90.
Third differential coefficient, 14.

Thompson, 259.

Thomsen's formula, 59.

Thomson, J., 3, 124.

Thomson, J. J., 173, 337, 426.

Thorpe, 443.
- and Rucker, 224.
- and Tutton, 224.

Three dimensional geometry, 101.

Time integral, 155.

periodic, 113.

Trimt-thylene, 493.

T<>< 11 muter, 233.

Tolloczko and Bruner, 384.

Toroidal harmonics, 358.

Total curvature, 139.

ilirt'. equations, 339.

Trajectory, 304.

orthogonal, 304.

Transcendental functions, 22.

Transformation of coordinate axes, 74.

to and from hyperbolic and trig.

functions, 276.

to and from polar and Cartesian coords
nates, 94, 109.
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Transverse axis (of hyperbola), 81.

Trapezium. Area of, 491.

Trapezoidal formulae, 266.
-

rule, 267.

Travers and Ramsay, 478.

Trevor, 414.

Triangle. Area of, 491.

spherical, 491.

of reference, 97.
-

parts of, 501, 504.
-

properties of, 500.

spherical, 502.

solution of, 500.

spherical, 504.

Triangular diagrams, 97.

lamina. Centre of gravity, 492.

Trignometrical formulae, 499*.

functions, 31.

differentiation of, 31.

inverse, 33.

differentiation of, 33.

numerical values of, 496.

transformation to and from hyper-
bolic, 276.

ratios, 494.

limiting values of, 495.

signs of, 495.

'series, 228.

Trignometry, 493.

plane, 493.
-

spherical, 493, 501.

Trilinear coordinates, 97.

Triple point, 126.
-

integrals, 196.

Tutton and Thorpe, 224.

Two dimensional geometry, 64.

Ultra-elliptic integrals, 189.

Upper limits of integration, 153.

Vacuum. Correction for weighing in a,

225.

Values, absolute, 238.

van der Waals, 4, 214, 303.

van der Waals' equation, 30, 62, 209, 211.

Variation, 487.
constant of, 487.

Vector radius, 93.
-

(ellipse), 78.

Vectorial angle, 93.

Velocities. Maxwell's law of distribution

of molecular, 448.

parallelogram of, 424.
-

parallelepiped of, 424.

Velocity, 6.

at any instant, 5, 6.

average, 6.

mean, 6.

negative, 7.

of chemical reactions, 46, 173, 174,

197, 203, 207, 523.

dependent, 330.

simultaneous, 330.

of solution of solids, 384.

positive, 6.

Venn, 428.

Vertex (ellipse), 79.

(parabola), 76.

Vibration. (See oscillation.)

period of, 113.

Vibrations, damped, 323, 326.
-

forced, 328.

natural, 326.

weighing by method of, 250.

Vibratory motion. Equations of, 322.

Viscosity of gases, 328.

Volten's formula, 149.

Volume elasticity, 92.

elements, 196.
-

integrals, 196.

of cone, 492.

of cylinder, 492.

of prism, 492.
- of pyi'amid, 492.

of rectangular parallelepiped, 492.

of similar figures, 492.

of sphere, 492.

of spherical triangles, 492.

Waage and Guldberg, 157, 204, 215.

Waddell, 206, 207.

Walker, 331, 336.
- roots of, 398. - and Appleyard, 207.

"ij/" surfaces, 111. and Hambly, 207.

Vanishing fractions, 242. and Judson, 175, 206.

van't Hoff, 202, 214, 217.
j Wantzel, 305.

van't Hoff's principle of mobile equili- >. Wason and Noyes, 202.

briurn, 216. Water pipes. Boys', 149.

Variable coefficients. Linear equations i Wave-length of light, 113.

with, 315, 350.

dependent, 5, 15.

independent, 5, 15, 340.

Weber and Gauss, 435.

and Riemann, 259, 369, 370.

Webev's diffusion experiments, 382.

integration by substitution of a new, Wegscheider, 336.

164, 284.

parameter, 142.

Variables, 15.

solution of diff. equations by separation

of, 283.

Weighted errors, 464.

observations, 464.

Weighing in vacuo. Correction for, 225.
- by Gauss' method of double, 250.

by method of vibrations, 250.
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Whewell. ;:,.

Whitiu-yjind Noyes, 384.

Will aii,l Simnili'-r, 376.

WillM-h.iy. 204.

\\illu-lniv-s law, 46, 150, 156, 161,
I'JtJ. .Vj:;.

Williuinvnu. i'l. ];;. 233.

\Vink.-liiiaiui. 41, 44.

Woodward and Merriman, 176, 280.

WoodhoiiM-. :!;_'.

Work. 182.

adiabatic of expanding gases, 211.

diagrams, 182.
-

Clapeyron's, 183.

197,

Work, graphic representation of, 182.

isothermal of expanding gases, 208.

of expansion of dissociating gases, 209

Wrapson and Gee, 484.

Young, 3.

Young's formula, 25.

Zeeman effect, 524.

Zero, absolute, 9.

point of balance, 250.

relative, 10.

Zeroth order, Bessel's functions, 358.

Zonal harmonics, 359.
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